GoLangunsafe包详细讲解
来源:脚本之家
时间:2022-12-22 16:57:27 185浏览 收藏
对于一个Golang开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《GoLangunsafe包详细讲解》,主要介绍了Langunsafe,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
1.前言
开发中,[]byte类型和string类型需要互相转换的场景并不少见,直接的想法是像下面这样进行强制类型转换:
a := "Kylin Lab" b := []byte(a) fmt.Println(a)//Kylin Lab fmt.Println(b)//[75 121 108 105 110 32 76 97 98]
如果接下来需要对b进行修改,那么这样转换就没什么问题,但是如果只是因为类型不合适,并不需要对转换后的变量做任何修改,那这样转换就显得不划算了。我们知道,[]byte和string的内存布局如下图所示:
可以看到它们都有一个底层数组来存储变量数据,而类型本身只记录这个数组的起始地址。如果采用强制类型转换的方式把a转换为b,那么就会重新分配b使用的底层数组。然后把a的底层数组内容拷贝到b的底层数组。如果字符串内容很多,多占用这许多字节的内存不说,还要耗费时间做拷贝,所以就显得很不合适了。
要是可以让b重复使用a的底层数组,那就好了。强转不行,就到了unsafe上场的时候了~
2.指针类型转换
unsafe提供的第一件法宝就是指针类型转换。我们知道像下面这样的指针类型转换是编译不通过的。
a := "Kylin Lab" var b []byte tmp := (*string)(&b) //cannot convert &b (type *[]byte) to type *string
但是你可以把任意一个指针类型转换为unsafe.Pointer类型,再把unsafe.Pointer类型转换为任意指针类型,就像下面这样是可以正常执行的:
tmp := (*string)(unsafe.Pointer(&b))
现在我们通过unsafe.Pointer把b的指针转换为*string类型,我们可以放心的这样做,是因为我们知道slice的底层布局与string是兼容的,b的前两项内容与a相同,都是一个uintptr和一个int。可参见reflect包中关于这两个类型的定义:
//reflect/value.go type StringHeader struct { Data uintptr Len int } type SliceHeader struct { Data uintptr Len int Cap int }
我们知道上面这个例子中 变量b只初始化了变量结构,并未初始化底层数组,元素个数和容量都为0。
接下来,我们把a赋值给tmp:
a := "Kylin Lab" var b []byte tmp := (*string)(unsafe.Pointer(&b)) *tmp = a fmt.Println(a) //Kylin Lab fmt.Println(b) //[75 121 108 105 110 32 76 97 98] fmt.Println(*tmp) //Kylin Lab fmt.Println(tmp) //0xc000004078 fmt.Printf("%p\n", &a) //0xc00005a250 fmt.Printf("%p\n", &b) //0xc000004078 fmt.Println(&a) //0xc00005a250 fmt.Println(&b)//&[75 121 108 105 110 32 76 97 98]
现在你猜怎么着,我们已经在变量b中重复使用了a的底层数组,元素个数也填好了~
不过还没完,b的容量还为0呢!怎么修改它呢?我们能拿到b的地址,也知道data和len各占8字节(64位下),只要把b的指针加上16字节就是cap的起始地址。可问题是Go语言的指针支持做加减运算吗?不支持!
这时候就要拿出unsafe提供的第二件法宝了!
a := "Kylin Lab" var b []byte tmp := (*string)(unsafe.Pointer(&b)) *tmp = a fmt.Println(len(a)) //9 fmt.Println(len(b)) //9 fmt.Println(cap(b)) //0
//unsafe/unsafe.go package unsafe type ArbitraryType int type IntegerType int//引用不会出错 type Pointer *ArbitraryType func Sizeof(x ArbitraryType) uintptr func Offsetof(x ArbitraryType) uintptr func Alignof(x ArbitraryType) uintptr func Add(ptr Pointer, len IntegerType) Pointer func Slice(ptr *ArbitraryType, len IntegerType) []ArbitraryType
//builtin/builtin.go // uintptr is an integer type that is large enough to hold the bit pattern of // any pointer. type uintptr uintptr // IntegerType is here for the purposes of documentation only. It is a stand-in // for any integer type: int, uint, int8 etc. type IntegerType int//引用会出错
3.指针运算
Go语言不支持指针直接进行运算,也是为了保障程序运行安全,防止出现莫名其妙的、玄之又玄的bug。
不过unsafe.Pointer可以和各种指针类型相互转换,也可以转换为uintptr类型,uintptr本质上就是一个无符号整型,所以它是可以进行运算的。 继续上面的例子,我们可以把b的指针转换为unsafe.Pointer,再进一步转换为uintptr。
(uintptr)(unsafe.Pointer(&b))
现在就把b的地址转换为uintptr类型了,64位下,如果把它加上16,就是b的容量的起始地址了。
(uintptr)(unsafe.Pointer(&b)) + 16
即便如此,我们也不能直接通过uintptr来修改b的容量,因为它不是指针类型,而且也不能直接转换为指针类型。但是可以通过unsafe.Pointer类型中转一下。
tmp2 := (*int)(unsafe.Pointer((uintptr)(unsafe.Pointer(&b)) + 16))
现在才算是拿到了b的容量的指针,再通过这个*int修改b的容量就OK了~
*tmp2 = len(b)
目前为止,我们已经借助unsafe的两个法宝,成功完成了string到[]byte的转换,并且复用了a的底层数组。
a := "Kylin Lab" var b []byte tmp := (*string)(unsafe.Pointer(&b)) *tmp = a tmp2 := (*int)(unsafe.Pointer((uintptr)(unsafe.Pointer(&b)) + 16)) *tmp2 = len(b) fmt.Println(len(a)) //9 fmt.Println(len(b)) //9 fmt.Println(cap(b)) //9
上面tmp2赋值这一行很长,也很绕。
注:虽然下面可以编译过,但是一定不要像下面这样先使用uintptr类型的临时变量来存储一个地址,然后才把它转换为某个指针类型。
tmp2 := (uintptr)(unsafe.Pointer(&b)) + 16 capPtr := (*int)(unsafe.Pointer(tmp2))
这是因为uintptr只是一个存储着地址的无符号整型而已,它不是指针,如果垃圾回收为了减少内存碎片而移动了一些变量,内存关联到的指针类型的值是会一并修改的,但是uintptr并不会,这就可能出现一些神奇的bug,所以这一行只能这么绕着写。
除此之外,这个硬编码的“16”怎么看都显得格外不和谐。有没有什么好方法,可以获取程序运行平台中一个类型的大小呢?这就要用到unsafe提供的第三个法宝了~
4.获取大小和偏移
unsafe.Sizeof可以拿到任意类型的大小,unsafe.Alignof可以拿到任意类型的对齐边界。按照reflect.SliceHeader的定义,我们这里可以用unsafe.Sizeof来获取uintptr和int的大小,b的起始地址偏移这么多就是第三个字段Cap的地址了。
a := "Kylin Lab" var b []byte tmp := (*string)(unsafe.Pointer(&b)) *tmp = a tmp2 := (*int)(unsafe.Pointer((uintptr)(unsafe.Pointer(&b)) + unsafe.Sizeof(uintptr(1)) + unsafe.Sizeof(1))) *tmp2 = len(b) fmt.Println(len(a)) //9 fmt.Println(len(b)) //9 fmt.Println(cap(b)) //9
不过这样还是存在投机的成分,别忘了内存对齐哦~
这里这样写可行,是因为我们知道uintptr和int的大小不是4字节就是8字节,无论哪一种,都会紧挨着第三个字段,不会出现因内存对齐而形成的间隙。
所以unsafe还有一个unsafe.Offsetof方法可以获得结构体中某个字段距离结构体起始地址的偏移值,这样就可以确定结构体成员正确的位置了。
为了试试这个方法,我们要把b的指针转换为reflect.SliceHeader类型,其实也可以自己定义一个SliceHeader类型,但这不是有现成的可以直接拿来用嘛~
bPtr := (*reflect.SliceHeader)(unsafe.Pointer(&b))
然后获取Cap字段在结构体内的偏移值:
unsafe.Offsetof(bPtr.Cap)
再然后,就是把这个字段的地址转换为*int,然后修改它的值了:
a := "Kylin Lab" var b []byte tmp := (*string)(unsafe.Pointer(&b)) *tmp = a bPtr := (*reflect.SliceHeader)(unsafe.Pointer(&b)) tmp2 := (*int)(unsafe.Pointer((uintptr)(unsafe.Pointer(&b)) + unsafe.Offsetof(bPtr.Cap))) *tmp2 = len(b) fmt.Println(len(a)) //9 fmt.Println(len(b)) //9 fmt.Println(cap(b)) //9
我们为了多介绍一些unsafe的功能,刻意绕了个远~
其实都把b转换为reflect.SliceHeader结构体了,改个字段值哪里要这么麻烦!!!我们大可以这样做:
strHeader := (*reflect.StringHeader)(unsafe.Pointer(&a)) sliceHeader := (*reflect.SliceHeader)(unsafe.Pointer(&b))
这样通过strHeader和sliceHeader想操作哪个字段都很方便。
a := "Kylin Lab" var b []byte strHeader := (*reflect.StringHeader)(unsafe.Pointer(&a)) sliceHeader := (*reflect.SliceHeader)(unsafe.Pointer(&b)) sliceHeader.Data = strHeader.Data sliceHeader.Len = strHeader.Len sliceHeader.Cap = strHeader.Len fmt.Println(len(a)) //9 fmt.Println(len(b)) //9 fmt.Println(cap(b)) //9
5.关于string
关于string,我们还要啰嗦一点,Go语言中string变量的内容默认是不会被修改的,而我们通过给string变量整体赋新值的方式来改变它的内容时,实际上会重新分配它的底层数组。
而string类型字面量的底层数组会被分配到只读数据段,在我们的例子中,b复用了a的底层数组,所以就不能再像下面这样修改b的内容了,否则执行阶段会发生错误。
a := "Kylin Lab" var b []byte strHeader := (*reflect.StringHeader)(unsafe.Pointer(&a)) sliceHeader := (*reflect.SliceHeader)(unsafe.Pointer(&b)) sliceHeader.Data = strHeader.Data sliceHeader.Len = strHeader.Len sliceHeader.Cap = strHeader.Len b[0] = 'k' /*运行报错: unexpected fault address 0x6d1875 fatal error: fault [signal 0xc0000005 code=0x1 addr=0x6d1875 pc=0x6c013a]*/
而运行时动态拼接而成的string变量,它的底层数组不在只读数据段,而是由Go语言在语法层面阻止对字符串内容的修改行为。
a := "Kylin Lab" //string字面量 c := "Hello " + a //动态拼接的字符串 c[0] = 'h' // cannot assign to c[0] 编译时报错
a := "Kylin Lab" //string字面量 a[0] = 'h' // cannot assign to c[0] 编译时报错
若我们利用unsafe让一个[]byte复用这个字符串c的底层数组,就可以绕过Go语法层面的限制,修改底层数组的内容了。
但是尽量不要这样做,如果不确定这个字符串会在哪里用到的话~
a := "Kylin Lab" c := "Hello" + a var s []byte strHeader := (*reflect.StringHeader)(unsafe.Pointer(&c)) sliceHeader := (*reflect.SliceHeader)(unsafe.Pointer(&s)) sliceHeader.Data = strHeader.Data sliceHeader.Len = strHeader.Len sliceHeader.Cap = strHeader.Len s[0] = 'h' fmt.Println(c) //hello Kylin Lab fmt.Println(a) //Kylin Lab fmt.Println(string(s)) //hello Kylin Lab
到这里,我们也就讲完了《GoLangunsafe包详细讲解》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于golang的知识点!
-
505 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
181 收藏
-
371 收藏
-
236 收藏
-
416 收藏
-
407 收藏
-
282 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习
-
- 着急的冰棍
- 这篇文章内容太及时了,很详细,受益颇多,收藏了,关注大佬了!希望大佬能多写Golang相关的文章。
- 2023-02-25 07:15:40
-
- 小巧的丝袜
- 真优秀,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,看完之后很有帮助,总算是懂了,感谢老哥分享文章内容!
- 2023-01-22 15:20:21
-
- 狂野的发卡
- 受益颇多,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢作者分享文章内容!
- 2022-12-31 05:33:42
-
- 个性的电源
- 这篇技术贴太及时了,太细致了,很棒,收藏了,关注作者大大了!希望作者大大能多写Golang相关的文章。
- 2022-12-29 15:34:44
-
- 酷酷的野狼
- 很详细,收藏了,感谢作者的这篇博文,我会继续支持!
- 2022-12-25 17:48:38