登录
首页 >  Golang >  Go问答

执行梯度降低

来源:stackoverflow

时间:2024-03-04 19:15:28 264浏览 收藏

“纵有疾风来,人生不言弃”,这句话送给正在学习Golang的朋友们,也希望在阅读本文《执行梯度降低》后,能够真的帮助到大家。我也会在后续的文章中,陆续更新Golang相关的技术文章,有好的建议欢迎大家在评论留言,非常感谢!

问题内容

我正在尝试在 go 中实现梯度下降。我的目标是根据汽车的行驶里程来预测汽车的成本。 这是我的数据集:

km,price
240000,3650
139800,3800
150500,4400
185530,4450
176000,5250
114800,5350
166800,5800
89000,5990
144500,5999
84000,6200
82029,6390
63060,6390
74000,6600
97500,6800
67000,6800
76025,6900
48235,6900
93000,6990
60949,7490
65674,7555
54000,7990
68500,7990
22899,7990
61789,8290

我尝试了各种方法,例如规范化数据集、不规范化数据集、保留 thetas 不变、非规范化 thetas...但我无法得到正确的结果。 我的数学一定有什么地方不对劲,但我不知道哪里不对。 我想要得到的结果应该约为 t0 = 8500, t1 = -0.02 我的实现如下:

package main

import (
    "encoding/csv"
    "fmt"
    "log"
    "math"
    "os"
    "strconv"
)

const (
    dataFile     = "data.csv"
    iterations   = 20000
    learningRate = 0.1
)

type dataSet [][]float64

var minKm, maxKm, minPrice, maxPrice float64

func (d dataSet) getExtremes(column int) (float64, float64) {

    min := math.Inf(1)
    max := math.Inf(-1)
    for _, row := range d {
        item := row[column]
        if item > max {
            max = item
        }
        if item < min {
            min = item
        }
    }

    return min, max
}

func normalizeItem(item, min, max float64) float64 {

    return (item - min) / (max - min)
}

func (d *dataSet) normalize() {

    minKm, maxKm = d.getExtremes(0)
    minPrice, maxPrice = d.getExtremes(1)
    for _, row := range *d {
        row[0], row[1] = normalizeItem(row[0], minKm, maxKm), normalizeItem(row[1], minPrice, maxPrice)
    }
}

func processEntry(entry []string) []float64 {

    if len(entry) != 2 {
        log.Fatalln("expected two fields")
    }
    km, err := strconv.ParseFloat(entry[0], 64)
    if err != nil {
        log.Fatalln(err)
    }
    price, err := strconv.ParseFloat(entry[1], 64)
    if err != nil {
        log.Fatalln(err)
    }
    return []float64{km, price}
}

func getData() dataSet {

    file, err := os.Open(dataFile)
    if err != nil {
        log.Fatalln(err)
    }
    reader := csv.NewReader(file)
    entries, err := reader.ReadAll()
    if err != nil {
        log.Fatalln(err)
    }
    entries = entries[1:]

    data := make(dataSet, len(entries))
    for k, entry := range entries {
        data[k] = processEntry(entry)
    }
    return data
}

func outputResult(theta0, theta1 float64) {
    file, err := os.OpenFile("weights.csv", os.O_WRONLY, 0644)
    if err != nil {
        log.Fatalln(err)
    }
    defer file.Close()
    file.Truncate(0)
    file.Seek(0, 0)
    file.WriteString(fmt.Sprintf("theta0,%.6f\ntheta1,%.6f\n", theta0, theta1))
}

func estimatePrice(theta0, theta1, mileage float64) float64 {

    return theta0 + theta1*mileage
}

func (d dataSet) computeThetas(theta0, theta1 float64) (float64, float64) {

    dataSize := float64(len(d))
    t0sum, t1sum := 0.0, 0.0
    for _, it := range d {
        mileage := it[0]
        price := it[1]
        err := estimatePrice(theta0, theta1, mileage) - price
        t0sum += err
        t1sum += err * mileage
    }

    return theta0 - (t0sum / dataSize * learningRate), theta1 - (t1sum / dataSize * learningRate)
}

func denormalize(theta, min, max float64) float64 {

    return theta*(max-min) + min
}

func main() {

    data := getData()
    data.normalize()
    theta0, theta1 := 0.0, 0.0
    for k := 0; k < iterations; k++ {
        theta0, theta1 = data.computeThetas(theta0, theta1)
    }
    theta0 = denormalize(theta0, minKm, maxKm)
    theta1 = denormalize(theta1, minPrice, maxPrice)
    outputResult(theta0, theta1)
}

为了正确实现梯度下降,我应该修复什么?


解决方案


Linear Regression 非常简单:

// yi = alpha + beta*xi + ei
func linearregression(x, y []float64) (float64, float64) {
    ex := expected(x)
    ey := expected(y)
    exy := expectedxy(x, y)
    exx := expectedxy(x, x)

    covariance := exy - ex*ey
    variance := exx - ex*ex
    beta := covariance / variance
    alpha := ey - beta*ex
    return alpha, beta
}

尝试一下 here,输出:

8499.599649933218 -0.021448963591702314 396270.87871142407

代码:

package main

import (
    "encoding/csv"
    "fmt"
    "strconv"
    "strings"
)

func main() {
    x, y := readxy(`data.csv`)
    alpha, beta := linearregression(x, y)
    fmt.println(alpha, beta, -alpha/beta) // 8499.599649933218 -0.021448963591702314 396270.87871142407
}

// https://en.wikipedia.org/wiki/ordinary_least_squares#simple_linear_regression_model
// yi = alpha + beta*xi + ei
func linearregression(x, y []float64) (float64, float64) {
    ex := expected(x)
    ey := expected(y)
    exy := expectedxy(x, y)
    exx := expectedxy(x, x)

    covariance := exy - ex*ey
    variance := exx - ex*ex
    beta := covariance / variance
    alpha := ey - beta*ex
    return alpha, beta
}

// e[x]
func expected(x []float64) float64 {
    sum := 0.0
    for _, v := range x {
        sum += v
    }
    return sum / float64(len(x))
}

// e[xy]
func expectedxy(x, y []float64) float64 {
    sum := 0.0
    for i, v := range x {
        sum += v * y[i]
    }
    return sum / float64(len(x))
}

func readxy(filename string) ([]float64, []float64) {
    // file, err := os.open(filename)
    // if err != nil {
    //  panic(err)
    // }
    // defer file.close()
    file := strings.newreader(data)

    reader := csv.newreader(file)
    records, err := reader.readall()
    if err != nil {
        panic(err)
    }
    records = records[1:]
    size := len(records)
    x := make([]float64, size)
    y := make([]float64, size)
    for i, v := range records {
        val, err := strconv.parsefloat(v[0], 64)
        if err != nil {
            panic(err)
        }
        x[i] = val
        val, err = strconv.parsefloat(v[1], 64)
        if err != nil {
            panic(err)
        }
        y[i] = val
    }
    return x, y
}

var data = `km,price
240000,3650
139800,3800
150500,4400
185530,4450
176000,5250
114800,5350
166800,5800
89000,5990
144500,5999
84000,6200
82029,6390
63060,6390
74000,6600
97500,6800
67000,6800
76025,6900
48235,6900
93000,6990
60949,7490
65674,7555
54000,7990
68500,7990
22899,7990
61789,8290`

Gradient descent 基于这样的观察:如果多变量函数 f(x) 被定义并且在点 a 的邻域中可微,那么如果从 azqba 沿fa,-∇f(a) 处的负梯度,例如:

// f(x)
f := func(x float64) float64 {
    return alpha + beta*x // write your target function here
}

导数函数:

h := 0.000001
// derivative function ∇f(x)
df := func(x float64) float64 {
    return (f(x+h) - f(x-h)) / (2 * h) // write your target function derivative here
}

搜索:

minimunAt := 1.0       // We start the search here
gamma := 0.01          // Step size multiplier
precision := 0.0000001 // Desired precision of result
max := 100000          // Maximum number of iterations
currentX := 0.0
step := 0.0
for i := 0; i < max; i++ {
    currentX = minimunAt
    minimunAt = currentX - gamma*df(currentX)
    step = minimunAt - currentX
    if math.Abs(step) <= precision {
        break
    }
}

fmt.Printf("Minimum at %.8f value: %v\n", minimunAt, f(minimunAt))

本篇关于《执行梯度降低》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于Golang的相关知识,请关注golang学习网公众号!

声明:本文转载于:stackoverflow 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>