我的神经网络(从头开始)训练,让它离目标更远
来源:stackoverflow
时间:2024-03-17 20:24:30 176浏览 收藏
在机器学习中,训练神经网络的目标是让模型学习特定任务或做出预测。本文介绍了从头开始使用 Go 语言创建神经网络的经验,重点在于训练一个简单的网络来相加两个数字。作者详细介绍了神经网络的架构和训练过程,并分享了调试和改进模型的见解。通过深入了解神经网络的工作原理和微调过程,作者旨在为其他初学者提供有价值的指导。
这是我第一次创建神经网络,我决定在 golang 中创建它,这通常不是用于此目的的语言,但是我想从头开始很好地理解它们如何工作仅基本库。
该程序的目标是训练一个神经网络,使其能够将两个数字(1-10)相加。为此,我创建了一个名为 rawai(我能想到的最好的名字)的神经网络类,并给它一个 1 个输入层(大小为 2 的数组)、1 个隐藏层(大小为 2 的数组)和 1 个输出层(大小为 1) 的数组。
权重有2个2d数组,一个是ih(hidden的输入)[2,2],一个是ho,[2,1]。
下面是启动 ai、训练和测试 ai 的代码。您将看到我使用过的几个调试语句,并且非 golang 或其包的任何其他函数将显示在我的 rawai 类的以下代码中。这是由我的 main 函数调用的:
func additionneuralnetworktest() { nn := newrawai(2, 2, 1, 1/math.pow(10, 15)) fmt.printf("weights ih before: %v\n\nweights ho after: %v\n", nn.weightsih, nn.weightsho) //train neural network // for epoch := 0; epoch < 10000000; epoch++ { for i := 0; i <= 10; i++ { for j := 0; j <= 10; j++ { inputs := make([]float64, 2) targets := make([]float64, 1) inputs[0] = float64(i) inputs[1] = float64(j) targets[0] = float64(i) + float64(j) nn.train(inputs, targets) if epoch%20000 == 0 && i == 5 && j == 5 { fmt.printf("[training] [epoch %d] %f + %f = %f targets[%f]\n", epoch, inputs[0], inputs[1], nn.outputlayer[0], targets[0]) } } } } // test neural network a := rand.intn(10) + 1 b := rand.intn(10) + 1 inputs := make([]float64, 2) inputs[0] = float64(a) inputs[1] = float64(b) prediction := nn.feedforward(inputs)[0] fmt.printf("%d + %d = %f\n", a, b, prediction) fmt.printf("weights ih: %v\n\nweights ho: %v\n", nn.weightsih, nn.weightsho) }
以下是 rawai 文件中的所有代码:
type RawAI struct { InputLayer []float64 `json:"input_layer"` HiddenLayer []float64 `json:"hidden_layer"` OutputLayer []float64 `json:"output_layer"` WeightsIH [][]float64 `json:"weights_ih"` WeightsHO [][]float64 `json:"weights_ho"` LearningRate float64 `json:"learning_rate"` } func NewRawAI(inputSize, hiddenSize, outputSize int, learningRate float64) *RawAI { nn := RawAI{ InputLayer: make([]float64, inputSize), HiddenLayer: make([]float64, hiddenSize), OutputLayer: make([]float64, outputSize), WeightsIH: randomMatrix(inputSize, hiddenSize), WeightsHO: randomMatrix(hiddenSize, outputSize), LearningRate: learningRate, } return &nn } func (nn *RawAI) FeedForward(inputs []float64) []float64 { // Set input layer for i := 0; i < len(inputs); i++ { nn.InputLayer[i] = inputs[i] } // Compute hidden layer for i := 0; i < len(nn.HiddenLayer); i++ { sum := 0.0 for j := 0; j < len(nn.InputLayer); j++ { sum += nn.InputLayer[j] * nn.WeightsIH[j][i] } nn.HiddenLayer[i] = sum if math.IsNaN(sum) { panic(fmt.Sprintf("Sum is NaN on Hidden Layer:\nInput Layer: %v\nHidden Layer: %v\nWeights IH: %v\n", nn.InputLayer, nn.HiddenLayer, nn.WeightsIH)) } } // Compute output layer for k := 0; k < len(nn.OutputLayer); k++ { sum := 0.0 for j := 0; j < len(nn.HiddenLayer); j++ { sum += nn.HiddenLayer[j] * nn.WeightsHO[j][k] } nn.OutputLayer[k] = sum if math.IsNaN(sum) { panic(fmt.Sprintf("Sum is NaN on Output Layer:\n Model: %v\n", nn)) } } return nn.OutputLayer } func (nn *RawAI) Train(inputs []float64, targets []float64) { nn.FeedForward(inputs) // Compute output layer error outputErrors := make([]float64, len(targets)) for k := 0; k < len(targets); k++ { outputErrors[k] = targets[k] - nn.OutputLayer[k] } // Compute hidden layer error hiddenErrors := make([]float64, len(nn.HiddenLayer)) for j := 0; j < len(nn.HiddenLayer); j++ { errorSum := 0.0 for k := 0; k < len(nn.OutputLayer); k++ { errorSum += outputErrors[k] * nn.WeightsHO[j][k] } hiddenErrors[j] = errorSum * sigmoidDerivative(nn.HiddenLayer[j]) if math.IsInf(math.Abs(hiddenErrors[j]), 1) { //Find out why fmt.Printf("Hidden Error is Infinite:\nTargets:%v\nOutputLayer:%v\n\n", targets, nn.OutputLayer) } } // Update weights for j := 0; j < len(nn.HiddenLayer); j++ { for k := 0; k < len(nn.OutputLayer); k++ { delta := nn.LearningRate * outputErrors[k] * nn.HiddenLayer[j] nn.WeightsHO[j][k] += delta } } for i := 0; i < len(nn.InputLayer); i++ { for j := 0; j < len(nn.HiddenLayer); j++ { delta := nn.LearningRate * hiddenErrors[j] * nn.InputLayer[i] nn.WeightsIH[i][j] += delta if math.IsNaN(delta) { fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i])) } if math.IsNaN(nn.WeightsIH[i][j]) { fmt.Print(fmt.Sprintf("Delta is NaN.\n Learning Rate: %f\nHidden Errors: %f\nInput: %f\n", nn.LearningRate, hiddenErrors[j], nn.InputLayer[i])) } } } } func (nn *RawAI) ExportWeights(filename string) error { weightsJson, err := json.Marshal(nn) if err != nil { return err } err = ioutil.WriteFile(filename, weightsJson, 0644) if err != nil { return err } return nil } func (nn *RawAI) ImportWeights(filename string) error { weightsJson, err := ioutil.ReadFile(filename) if err != nil { return err } err = json.Unmarshal(weightsJson, nn) if err != nil { return err } return nil } //RawAI Tools: func randomMatrix(rows, cols int) [][]float64 { matrix := make([][]float64, rows) for i := 0; i < rows; i++ { matrix[i] = make([]float64, cols) for j := 0; j < cols; j++ { matrix[i][j] = 1.0 } } return matrix } func sigmoid(x float64) float64 { return 1.0 / (1.0 + exp(-x)) } func sigmoidDerivative(x float64) float64 { return x * (1.0 - x) } func exp(x float64) float64 { return 1.0 + x + (x*x)/2.0 + (x*x*x)/6.0 + (x*x*x*x)/24.0 }
输出的例子是这样的: 正如您所看到的,它慢慢地远离目标并继续这样做。 经过询问、谷歌搜索和搜索这个网站后,我找不到我的错误所在,所以我决定问这个问题。
正确答案
我认为您使用的是 均方误差
并在微分后忘记了 -
。
所以改变:
outputerrors[k] = (targets[k] - nn.outputlayer[k])
致:
outputErrors[k] = -(targets[k] - nn.OutputLayer[k])
文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《我的神经网络(从头开始)训练,让它离目标更远》文章吧,也可关注golang学习网公众号了解相关技术文章。
-
502 收藏
-
502 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
139 收藏
-
204 收藏
-
325 收藏
-
477 收藏
-
486 收藏
-
439 收藏
-
357 收藏
-
352 收藏
-
101 收藏
-
440 收藏
-
212 收藏
-
143 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习