Go timer如何调度
来源:脚本之家
时间:2022-12-31 20:14:34 160浏览 收藏
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个Golang开发实战,手把手教大家学习《Go timer如何调度》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
本篇文章剖析下 Go 定时器的相关内容。定时器不管是业务开发,还是基础架构开发,都是绕不过去的存在,由此可见定时器的重要程度。
我们不管用 NewTimer, timer.After,还是 timer.AfterFun 来初始化一个 timer, 这个 timer 最终都会加入到一个全局 timer 堆中,由 Go runtime 统一管理。
全局的 timer 堆也经历过三个阶段的重要升级。
- Go 1.9 版本之前,所有的计时器由全局唯一的四叉堆维护,协程间竞争激烈。
- Go 1.10 - 1.13,全局使用 64 个四叉堆维护全部的计时器,没有本质解决 1.9 版本之前的问题
- Go 1.14 版本之后,每个 P 单独维护一个四叉堆。
Go 1.14 以后的 timer 性能得到了质的飞升,不过伴随而来的是 timer 成了 Go 里面最复杂、最难梳理的数据结构。本文不会详细分析每一个细节,我们从大体来了解 Go timer 的工作原理。
1. 使用场景
Go timer 在我们代码中会经常遇到。
场景1:RPC 调用的防超时处理(下面代码节选 dubbogo)
func (c *Client) Request(request *remoting.Request, timeout time.Duration, response *remoting.PendingResponse) error { _, session, err := c.selectSession(c.addr) // .. 省略 if totalLen, sendLen, err = c.transfer(session, request, timeout); err != nil { if sendLen != 0 && totalLen != sendLen { // .. 省略 } return perrors.WithStack(err) } // .. 省略 select { case场景2:Context 的超时处理
func main() { ctx, cancel := context.WithTimeout(context.Background(), 1*time.Second) defer cancel() go doSomething() select { case2. 图解源码
2.1 四叉堆原理
timer 的全局堆是一个四叉堆,特别是 Go 1.14 之后每个 P 都会维护着一个四叉堆,减少了 Goroutine 之间的并发问题,提升了 timer 了性能。
四叉堆其实就是四叉树,Go timer 是如何维护四叉堆的呢?
- Go runtime 调度 timer 时,触发时间更早的 timer,要减少其查询次数,尽快被触发。所以四叉树的父节点的触发时间是一定小于子节点的。
- 四叉树顾名思义最多有四个子节点,为了兼顾四叉树插、删除、重排速度,所以四个兄弟节点间并不要求其按触发早晚排序。
这里用两张动图简单演示下 timer 的插入和删除
把 timer 插入堆
把 timer 从堆中删除
2.2 timer 是如何被调度的?
调用 NewTimer,timer.After, timer.AfterFunc 生产 timer, 加入对应的 P 的堆上。
调用 timer.Stop, timer.Reset 改变对应的 timer 的状态。
GMP 在调度周期内中会调用 checkTimers ,遍历该 P 的 timer 堆上的元素,根据对应 timer 的状态执行真的操作。
2.3 timer 是如何加入到 timer 堆上的?
把 timer 加入调度总共有下面几种方式:
- 通过 NewTimer, time.After, timer.AfterFunc 初始化 timer 后,相关 timer 就会被放入到对应 p 的 timer 堆上。
- timer 已经被标记为 timerRemoved,调用了 timer.Reset(d),这个 timer 也会重新被加入到 p 的 timer 堆上
- timer 还没到需要被执行的时间,被调用了 timer.Reset(d),这个 timer 会被 GMP 调度探测到,先将该 timer 从 timer 堆上删除,然后重新加入到 timer 堆上
- STW 时,runtime 会释放不再使用的 p 的资源,p.destroy()->timer.moveTimers,将不再被使用的 p 的 timers 上有效的 timer(状态是:timerWaiting,timerModifiedEarlier,timerModifiedLater) 都重新加入到一个新的 p 的 timer 上
2.4 Reset 时 timer 是如何被操作的?
Reset 的目的是把 timer 重新加入到 timer 堆中,重新等待被触发。不过分为两种情况:
- 被标记为 timerRemoved 的 timer,这种 timer 是已经从 timer 堆上删除了,但会重新设置被触发时间,加入到 timer 堆中
- 等待被触发的 timer,在 Reset 函数中只会修改其触发时间和状态(timerModifiedEarlier或timerModifiedLater)。这个被修改状态的 timer 也同样会被重新加入到 timer堆上,不过是由 GMP 触发的,由 checkTimers 调用 adjusttimers 或者 runtimer 来执行的。
2.5 Stop 时 timer 是如何被操作的?
time.Stop 为了让 timer 停止,不再被触发,也就是从 timer 堆上删除。不过 timer.Stop 并不会真正的从 p 的 timer 堆上删除 timer,只会将 timer 的状态修改为 timerDeleted。然后等待 GMP 触发的 adjusttimers 或者 runtimer 来执行。
真正删除 timer 的函数有两个 dodeltimer,dodeltimer0。
2.6 Timer 是如何被真正执行的?
timer 的真正执行者是 GMP。GMP 会在每个调度周期内,通过 runtime.checkTimers 调用 timer.runtimer(). timer.runtimer 会检查该 p 的 timer 堆上的所有 timer,判断这些 timer 是否能被触发。
如果该 timer 能够被触发,会通过回调函数 sendTime 给 Timer 的 channel C 发一个当前时间,告诉我们这个 timer 已经被触发了。
如果是 ticker 的话,被触发后,会计算下一次要触发的时间,重新将 timer 加入 timer 堆中。
3. Timer 使用中的坑
确实 timer 是我们开发中比较常用的工具,但是 timer 也是最容易导致内存泄露,CPU 狂飙的杀手之一。
不过仔细分析可以发现,其实能够造成问题就两个方面:
- 错误创建很多的 timer,导致资源浪费
- 由于 Stop 时不会主动关闭 C,导致程序阻塞
3.1 错误创建很多 timer,导致资源浪费
func main() { for { // xxx 一些操作 timeout := time.After(30 * time.Second) select { case上面这段代码是造成 timer 异常的最常见的写法,也是我们最容易忽略的写法。
造成问题的原因其实也很简单,因为 timer.After 底层是调用的 timer.NewTimer,NewTimer 生成 timer 后,会将 timer 放入到全局的 timer 堆中。
for 会创建出来数以万计的 timer 放入到 timer 堆中,导致机器内存暴涨,同时不管 GMP 周期 checkTimers,还是插入新的 timer 都会疯狂遍历 timer 堆,导致 CPU 异常。
要注意的是,不只 time.After 会生成 timer, NewTimer,time.AfterFunc 同样也会生成 timer 加入到 timer 中,也都要防止循环调用。
解决办法: 使用 time.Reset 重置 timer,重复利用 timer。
我们已经知道 time.Reset 会重新设置 timer 的触发时间,然后将 timer 重新加入到 timer 堆中,等待被触发调用。
func main() { timer := time.NewTimer(time.Second * 5) for { t.Reset(time.Second * 5) select { case3.2 程序阻塞,造成内存或者 goroutine 泄露
func main() { timer1 := time.NewTimer(2 * time.Second)上面的代码可以看出来,只有等待 timer 超时 "done" 才会输出,原理很简单:程序阻塞在
不过使用 timer.Stop 的时候就要特别注意了,比如:
func main() { timer1 := time.NewTimer(2 * time.Second) go func() { timer1.Stop() }()程序就会一直死锁了,因为 timer1.Stop 并不会关闭 channel C,使程序一直阻塞在 timer1.C 上。
上面这个例子过于简单了,试想下如果
Stop 的正确的使用方式:
func main() { timer1 := time.NewTimer(2 * time.Second) go func() { if !timer1.Stop() {终于介绍完啦!小伙伴们,这篇关于《Go timer如何调度》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布Golang相关知识,快来关注吧!
-
312 收藏
-
335 收藏
-
106 收藏
-
274 收藏
-
245 收藏
-
233 收藏
-
322 收藏
-
181 收藏
-
316 收藏
-
244 收藏
-
300 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习
-
- 无奈的外套
- 真优秀,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢up主分享技术贴!
- 2023-02-14 13:36:50
-
- 欢呼的台灯
- 这篇博文出现的刚刚好,好细啊,受益颇多,mark,关注作者大大了!希望作者大大能多写Golang相关的文章。
- 2023-02-12 11:49:18
-
- 执着的金毛
- 很好,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,看完之后很有帮助,总算是懂了,感谢up主分享博文!
- 2023-01-30 12:27:03
-
- 沉静的睫毛
- 这篇文章内容出现的刚刚好,很详细,受益颇多,已收藏,关注楼主了!希望楼主能多写Golang相关的文章。
- 2023-01-25 14:32:05
-
- yajie
- 这篇技术贴出现的刚刚好,太详细了,很有用,已加入收藏夹了,关注大佬了!希望大佬能多写Golang相关的文章。
- 2023-01-13 05:42:51