golang网络通信超时设置方式
来源:脚本之家
时间:2022-12-30 17:28:19 182浏览 收藏
在Golang实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《golang网络通信超时设置方式》,聊聊超时、网络通信,希望可以帮助到正在努力赚钱的你。
网络通信中,为了防止长时间无响应的情况,经常会用到网络连接超时、读写超时的设置。
本文结合例子简介golang的连接超时和读写超时设置。
1.超时设置
1.1 连接超时
func DialTimeout(network, address string, timeout time.Duration) (Conn, error)
第三个参数timeout可以用来设置连接超时设置。
如果超过timeout的指定的时间,连接没有完成,会返回超时错误。
1.2 读写超时
在Conn定义中,包括读写的超时时间设置。
type Conn interface {
// SetDeadline sets the read and write deadlines associated
// with the connection. It is equivalent to calling both
// SetReadDeadline and SetWriteDeadline.
//
... ...
SetDeadline(t time.Time) error
// SetReadDeadline sets the deadline for future Read calls
// and any currently-blocked Read call.
// A zero value for t means Read will not time out.
SetReadDeadline(t time.Time) error
// SetWriteDeadline sets the deadline for future Write calls
// and any currently-blocked Write call.
// Even if write times out, it may return n > 0, indicating that
// some of the data was successfully written.
// A zero value for t means Write will not time out.
SetWriteDeadline(t time.Time) error
}
通过上面的函数说明,可以得知,这里的参数t是一个未来的时间点,所以每次读或写之前,都要调用SetXXX重新设置超时时间,
如果只设置一次,就会出现总是超时的问题。
2.例子
2.1 server
server端监听连接,如果收到连接请求,就是创建一个goroutine负责这个连接的数据收发。
为了测试超时,我们在写操作之前,sleep 3s。
package main
import (
"net"
"log"
"time"
)
func main() {
addr := "0.0.0.0:8080"
tcpAddr, err := net.ResolveTCPAddr("tcp",addr)
if err != nil {
log.Fatalf("net.ResovleTCPAddr fail:%s", addr)
}
listener, err := net.ListenTCP("tcp", tcpAddr)
if err != nil {
log.Fatalf("listen %s fail: %s", addr, err)
} else {
log.Println("listening", addr)
}
for {
conn, err := listener.Accept()
if err != nil {
log.Println("listener.Accept error:", err)
continue
}
go handleConnection(conn)
}
}
func handleConnection(conn net.Conn) {
defer conn.Close()
var buffer []byte = []byte("You are welcome. I'm server.")
for {
time.Sleep(3*time.Second)// sleep 3s
n, err := conn.Write(buffer)
if err != nil {
log.Println("Write error:", err)
break
}
log.Println("send:", n)
}
log.Println("connetion end")
}
2.2 client
client建立连接时,使用的超时时间是3s。
创建连接成功后,设置连接的读超时。
每次读之前,都重新设置超时时间。
package main
import (
"log"
"net"
"os"
"time"
)
func main() {
connTimeout := 3*time.Second
conn, err := net.DialTimeout("tcp", "127.0.0.1:8080", connTimeout) // 3s timeout
if err != nil {
log.Println("dial failed:", err)
os.Exit(1)
}
defer conn.Close()
readTimeout := 2*time.Second
buffer := make([]byte, 512)
for {
err = conn.SetReadDeadline(time.Now().Add(readTimeout)) // timeout
if err != nil {
log.Println("setReadDeadline failed:", err)
}
n, err := conn.Read(buffer)
if err != nil {
log.Println("Read failed:", err)
//break
}
log.Println("count:", n, "msg:", string(buffer))
}
}
输出结果
2019/05/12 16:18:19 Read failed: read tcp 127.0.0.1:51718->127.0.0.1:8080: i/o timeout 2019/05/12 16:18:19 count: 0 msg: 2019/05/12 16:18:20 count: 28 msg: You are welcome. I'm server. 2019/05/12 16:18:22 Read failed: read tcp 127.0.0.1:51718->127.0.0.1:8080: i/o timeout 2019/05/12 16:18:22 count: 0 msg: You are welcome. I'm server. 2019/05/12 16:18:23 count: 28 msg: You are welcome. I'm server. 2019/05/12 16:18:25 Read failed: read tcp 127.0.0.1:51718->127.0.0.1:8080: i/o timeout 2019/05/12 16:18:25 count: 0 msg: You are welcome. I'm server. 2019/05/12 16:18:26 count: 28 msg: You are welcome. I'm server.
补充:Golang中的并发限制与超时控制
并发
package main
import (
"fmt"
"time"
)
func run(task_id, sleeptime int, ch chan string) {
time.Sleep(time.Duration(sleeptime) * time.Second)
ch
<p>函数 run() 接受输入的参数,sleep 若干秒。然后通过 go 关键字并发执行,通过 channel 返回结果。</p>
<p>channel 顾名思义,他就是 goroutine 之间通信的“管道"。管道中的数据流通,实际上是 goroutine 之间的一种内存共享。我们通过他可以在 goroutine 之间交互数据。</p>
<p>ch
</p><p>
</p><p>channel 分为无缓冲(unbuffered)和缓冲(buffered)两种。例如刚才我们通过如下方式创建了一个无缓冲的 channel。</p>
<p>ch := make(chan string)</p>
<p>channel 的缓冲,我们一会再说,先看看刚才看看执行的结果。</p>
<p><img alt="" src="/uploads/20221230/167239262063aeafac815d4.jpg"></p>
<p>三个 goroutine `分别 sleep 了 3,2,1秒。但总耗时只有 3 秒。所以并发生效了,go 的并发就是这么简单。</p>
<p><strong>按序返回</strong></p>
<p>刚才的示例中,我执行任务的顺序是 0,1,2。但是从 channel 中返回的顺序却是 2,1,0。这很好理解,因为 task 2 执行的最快嘛,所以先返回了进入了 channel,task 1 次之,task 0 最慢。</p>
<p>如果我们希望按照任务执行的顺序依次返回数据呢?可以通过一个 channel 数组(好吧,应该叫切片)来做,比如这样</p>
<pre class="brush:plain;">
package main
import (
"fmt"
"time"
)
func run(task_id, sleeptime int, ch chan string) {
time.Sleep(time.Duration(sleeptime) * time.Second)
ch
<p><img alt="" src="/uploads/20221230/167239262163aeafad12a3c.jpg"></p>
<p><strong>超时控制</strong></p>
<p>刚才的例子里我们没有考虑超时。然而如果某个 goroutine 运行时间太长了,那很肯定会拖累主 goroutine 被阻塞住,整个程序就挂起在那儿了。因此我们需要有超时的控制。</p>
<p>通常我们可以通过select + time.After 来进行超时检查,例如这样,我们增加一个函数 Run() ,在 Run() 中执行 go run() 。并通过 select + time.After 进行超时判断。</p>
<pre class="brush:plain;">
package main
import (
"fmt"
"time"
)
func Run(task_id, sleeptime, timeout int, ch chan string) {
ch_run := make(chan string)
go run(task_id, sleeptime, ch_run)
select {
case re :=
<p>运行结果,task 0 和 task 1 已然超时</p>
<p><img alt="" src="/uploads/20221230/167239262163aeafad6fe76.jpg"></p>
<p><strong>并发限制</strong></p>
<p>如果任务数量太多,不加以限制的并发开启 goroutine 的话,可能会过多的占用资源,服务器可能会爆炸。所以实际环境中并发限制也是一定要做的。</p>
<p>一种常见的做法就是利用 channel 的缓冲机制。我们分别创建一个带缓冲和不带缓冲的 channel 看看</p>
<p>ch := make(chan string) // 这是一个无缓冲的 channel,或者说缓冲区长度是 0</p>
<p>ch := make(chan string, 1) // 这是一个带缓冲的 channel, 缓冲区长度是 1</p>
<p>这两者的区别在于,如果 channel 没有缓冲,或者缓冲区满了。goroutine 会自动阻塞,直到 channel 里的数据被读走为止。举个例子</p>
<pre class="brush:plain;">
package main
import (
"fmt"
)
func main() {
ch := make(chan string)
ch
<p>这段代码执行将报错</p>
<pre class="brush:plain;">
fatal error: all goroutines are asleep - deadlock!
goroutine 1 [chan send]:
main.main()
/tmp/sandbox531498664/main.go:9 +0x60
Program exited.
这是因为我们创建的 ch 是一个无缓冲的 channel。因此在执行到 ch
如果我们改成这样,程序就可执行
package main
import (
"fmt"
)
func main() {
ch := make(chan string, 1)
ch
<p>执行</p>
<blockquote>
<p>123</p>
<p>Program exited.</p>
</blockquote>
<p>如果我们改成这样</p>
<pre class="brush:plain;">
package main
import (
"fmt"
)
func main() {
ch := make(chan string, 1)
ch
<p>尽管读取了两次 channel,但是程序还是会死锁,因为缓冲区满了,goroutine 阻塞挂起。第二个 ch
</p><p><img alt="" src="/uploads/20221230/167239262163aeafadeab6c.jpg"></p>
<p>因此,利用 channel 的缓冲设定,我们就可以来实现并发的限制。我们只要在执行并发的同时,往一个带有缓冲的 channel 里写入点东西(随便写啥,内容不重要)。让并发的 goroutine 在执行完成后把这个 channel 里的东西给读走。这样整个并发的数量就讲控制在这个 channel 的缓冲区大小上。</p>
<p>比如我们可以用一个 bool 类型的带缓冲 channel 作为并发限制的计数器。</p>
<p><img alt="" src="/uploads/20221230/167239262263aeafae73869.jpg"></p>
<p>然后在并发执行的地方,每创建一个新的 goroutine,都往 chLimit 里塞个东西。</p>
<pre class="brush:plain;">
for i, sleeptime := range input {
chs[i] = make(chan string, 1)
chLimit
<p>这里通过 go 关键字并发执行的是新构造的函数。他在执行完原来的 Run() 后,会把 chLimit 的缓冲区里给消费掉一个。</p>
<pre class="brush:plain;">
limitFunc := func(chLimit chan bool, ch chan string, task_id, sleeptime, timeout int) {
Run(task_id, sleeptime, timeout, ch)
<p>这样一来,当创建的 goroutine 数量到达 chLimit 的缓冲区上限后。主 goroutine 就挂起阻塞了,直到这些 goroutine 执行完毕,消费掉了 chLimit 缓冲区中的数据,程序才会继续创建新的 goroutine。我们并发数量限制的目的也就达到了。</p>
<p>完整示例代码</p>
<pre class="brush:plain;">
package main
import (
"fmt"
"time"
)
func Run(task_id, sleeptime, timeout int, ch chan string) {
ch_run := make(chan string)
go run(task_id, sleeptime, ch_run)
select {
case re :=
<p>运行结果</p>
<pre class="brush:plain;">
Multirun start
task id 0 , timeout
task id 1 , timeout
task id 2 , sleep 1 second
Multissh finished. Process time 5s. Number of task is 3
Program exited.
chLimit 的缓冲是 1。task 0 和 task 1 耗时 2 秒超时。task 2 耗时 1 秒。总耗时 5 秒。并发限制生效了。
如果我们修改并发限制为 2
chLimit := make(chan bool, 2)
运行结果
Multirun start task id 0 , timeout task id 1 , timeout task id 2 , sleep 1 second Multissh finished. Process time 3s. Number of task is 3 Program exited.
task 0 , task 1 并发执行,耗时 2秒。task 2 耗时 1秒。总耗时 3 秒。符合预期。
有没有注意到代码里有个地方和之前不同。这里,用了一个带缓冲的 channel
chs[i] = make(chan string, 1)
还记得上面的例子么。如果 channel 不带缓冲,那么直到他被消费掉之前,这个 goroutine 都会被阻塞挂起。
然而如果这里的并发限制,也就是 chLimit 生效阻塞了主 goroutine,那么后面消费这些数据的代码并不会执行到。。。于是就 deadlock 拉!
for _, ch := range chs {
fmt.Println(
<p>所以给他一个缓冲就好了。</p>
<p>以上为个人经验,希望能给大家一个参考,也希望大家多多支持golang学习网。如有错误或未考虑完全的地方,望不吝赐教。</p><p>到这里,我们也就讲完了《golang网络通信超时设置方式》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于golang的知识点!</p> -
234 收藏
-
235 收藏
-
396 收藏
-
400 收藏
-
207 收藏
-
379 收藏
-
119 收藏
-
140 收藏
-
147 收藏
-
378 收藏
-
255 收藏
-
287 收藏
-
393 收藏
-
310 收藏
-
110 收藏
-
412 收藏
-
423 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习