java框架中的大数据处理技术有哪些?
时间:2024-07-22 20:33:55 367浏览 收藏
怎么入门文章编程?需要学习哪些知识点?这是新手们刚接触编程时常见的问题;下面golang学习网就来给大家整理分享一些知识点,希望能够给初学者一些帮助。本篇文章就来介绍《java框架中的大数据处理技术有哪些?》,涉及到,有需要的可以收藏一下
Java 框架中的大数据处理技术包括:Apache Hadoop:分布式处理框架,包括 HDFS(文件系统)和 MapReduce(编程模型)。Apache Spark:统一分析引擎,结合了 Hadoop 的处理能力和内存计算。Flink:分布式流处理引擎,用于处理实时数据流。
Java 框架中的大数据处理技术
随着大数据的普及,Java 开发人员需要具备处理海量数据的能力。Java 框架提供了各种技术来有效处理大数据,本篇文章将介绍一些最受欢迎的技术。
Apache Hadoop
Hadoop 是一个分布式处理框架,用于处理大数据集。它由一套工具组成,包括:
- HDFS (Hadoop 分布式文件系统):存储和管理分布式文件。
- MapReduce:一种编程模型,用于并行处理大型数据集。
import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class MyMapper extends Mapper
Apache Spark
Spark 是一个统一的分析引擎,结合了 Hadoop 的处理能力和内存计算。它提供了高级 API,简化了大数据处理。
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.sql.Dataset; import org.apache.spark.sql.Row; import org.apache.spark.sql.SparkSession; import org.apache.spark.sql.types.DataTypes; import org.apache.spark.sql.types.StructType; public class SparkWordCount { public static void main(String[] args) { SparkSession spark = SparkSession.builder().appName("word count").master("local").getOrCreate(); JavaSparkContext jsc = new JavaSparkContext(spark.sparkContext()); JavaRDDlines = jsc.textFile(args[0]); JavaRDD words = lines.flatMap(line -> Arrays.asList(line.split(" ")).iterator()); JavaPairRDD wordCounts = words.mapToPair(word -> new Tuple2<>(word, 1)).reduceByKey((a, b) -> a + b); StructType schema = DataTypes.createStructType(new StructField[] { DataTypes.createStructField("word", DataTypes.StringType, false), DataTypes.createStructField("count", DataTypes.IntegerType, false) }); Dataset df = spark.createDataFrame(wordCounts.rdd(), schema); df.show(); } }
Flink
Flink 是一个分布式流处理引擎,用于实时处理不断增长的数据集。它可以处理无限的数据流,并提供容错和低延迟。
import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.api.java.utils.ParameterTool; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.windowing.time.Time; public class FlinkWordCount { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); ParameterTool params = ParameterTool.fromArgs(args); String input = params.has("input") ? params.get("input") : "data.txt"; DataStreamtext = env.readTextFile(input); DataStream > counts = text .flatMap(line -> Arrays.asList(line.split(" ")).iterator()) .map(word -> Tuple2.of(word, 1)) .keyBy(0) .timeWindow(Time.seconds(1)) .sum(1); counts.print().setParallelism(1); env.execute(); } }
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
114 收藏
-
214 收藏
-
166 收藏
-
287 收藏
-
465 收藏
-
493 收藏
-
403 收藏
-
425 收藏
-
240 收藏
-
394 收藏
-
479 收藏
-
210 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习