Tensorflow 音乐预测
来源:dev.to
时间:2024-08-27 15:54:52 237浏览 收藏
从现在开始,我们要努力学习啦!今天我给大家带来《Tensorflow 音乐预测》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!
在本文中,我展示了如何使用张量流来预测音乐风格。
在我的示例中,我比较了电子音乐和古典音乐。
你可以在我的github上找到代码:
https://github.com/victordalet/sound_to_partition
i - 数据集
第一步,您需要创建一个数据集文件夹,并在里面添加一个音乐风格文件夹,例如我添加一个 techno 文件夹和 classic 文件夹,其中放置我的 wav 歌曲。
ii - 火车
我创建一个训练文件,参数 max_epochs 需要完成。
修改构造函数中与数据集文件夹中您的目录对应的类。
在加载和处理方法中,我从不同的目录检索wav文件并获取频谱图。
出于训练目的,我使用 keras 卷积和模型。
import os import sys from typing import list import librosa import numpy as np from tensorflow.keras.layers import input, conv2d, maxpooling2d, flatten, dense from tensorflow.keras.models import model from tensorflow.keras.optimizers import adam from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from tensorflow.image import resize class train: def __init__(self): self.x_train = none self.x_test = none self.y_train = none self.y_test = none self.data_dir: str = 'dataset' self.classes: list[str] = ['techno','classic'] self.max_epochs: int = int(sys.argv[1]) @staticmethod def load_and_preprocess_data(data_dir, classes, target_shape=(128, 128)): data = [] labels = [] for i, class_name in enumerate(classes): class_dir = os.path.join(data_dir, class_name) for filename in os.listdir(class_dir): if filename.endswith('.wav'): file_path = os.path.join(class_dir, filename) audio_data, sample_rate = librosa.load(file_path, sr=none) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), target_shape) data.append(mel_spectrogram) labels.append(i) return np.array(data), np.array(labels) def create_model(self): data, labels = self.load_and_preprocess_data(self.data_dir, self.classes) labels = to_categorical(labels, num_classes=len(self.classes)) # convert labels to one-hot encoding self.x_train, self.x_test, self.y_train, self.y_test = train_test_split(data, labels, test_size=0.2, random_state=42) input_shape = self.x_train[0].shape input_layer = input(shape=input_shape) x = conv2d(32, (3, 3), activation='relu')(input_layer) x = maxpooling2d((2, 2))(x) x = conv2d(64, (3, 3), activation='relu')(x) x = maxpooling2d((2, 2))(x) x = flatten()(x) x = dense(64, activation='relu')(x) output_layer = dense(len(self.classes), activation='softmax')(x) self.model = model(input_layer, output_layer) self.model.compile(optimizer=adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy']) def train_model(self): self.model.fit(self.x_train, self.y_train, epochs=self.max_epochs, batch_size=32, validation_data=(self.x_test, self.y_test)) test_accuracy = self.model.evaluate(self.x_test, self.y_test, verbose=0) print(test_accuracy[1]) def save_model(self): self.model.save('weight.h5') if __name__ == '__main__': train = train() train.create_model() train.train_model() train.save_model()
iii-测试
为了测试和使用模型,我创建了这个类来检索权重并预测音乐的风格。
不要忘记将正确的类添加到构造函数中。
from typing import List import librosa import numpy as np from tensorflow.keras.models import load_model from tensorflow.image import resize import tensorflow as tf class Test: def __init__(self, audio_file_path: str): self.model = load_model('weight.h5') self.target_shape = (128, 128) self.classes: List[str] = ['techno','classic'] self.audio_file_path: str = audio_file_path def test_audio(self, file_path, model): audio_data, sample_rate = librosa.load(file_path, sr=None) mel_spectrogram = librosa.feature.melspectrogram(y=audio_data, sr=sample_rate) mel_spectrogram = resize(np.expand_dims(mel_spectrogram, axis=-1), self.target_shape) mel_spectrogram = tf.reshape(mel_spectrogram, (1,) + self.target_shape + (1,)) predictions = model.predict(mel_spectrogram) class_probabilities = predictions[0] predicted_class_index = np.argmax(class_probabilities) return class_probabilities, predicted_class_index def test(self): class_probabilities, predicted_class_index = self.test_audio(self.audio_file_path, self.model) for i, class_label in enumerate(self.classes): probability = class_probabilities[i] print(f'Class: {class_label}, Probability: {probability:.4f}') predicted_class = self.classes[predicted_class_index] accuracy = class_probabilities[predicted_class_index] print(f'The audio is classified as: {predicted_class}') print(f'Accuracy: {accuracy:.4f}')
好了,本文到此结束,带大家了解了《Tensorflow 音乐预测》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!
声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
345 收藏
-
463 收藏
-
124 收藏
-
393 收藏
-
424 收藏
-
123 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习