登录
首页 >  科技周边 >  业界新闻

中国科学院大连化物所等开发出用于电池寿命预测的深度学习模型

来源:IT之家

时间:2024-09-04 10:34:04 144浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《中国科学院大连化物所等开发出用于电池寿命预测的深度学习模型》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

本站 9 月 3 日消息,锂电池寿命的准确预测对于电气设备的正常运行至关重要。然而,由于电池容量退化过程的非线性和运行条件的不确定性,电池寿命的准确预测面临着挑战。中国科学院表示,大连化学物理研究所能源催化转化全国重点实验室动力电池与系统研究部研究员陈忠伟、副研究员毛治宇团队,联合西安交通大学教授冯江涛在电池健康管理研究方面取得进展。相关研究成果已经发表在《电气电子工程师学会交通电气化学报》上(本站附 DOI:10.1109/TTE.2024.3434553)。

中国科学院大连化物所等开发出用于电池寿命预测的深度学习模型

1. 据介绍,研究团队开发出了新型的深度学习模型,克服了传统方法对大量充电测试数据的依赖,为电池实时寿命预估提供了新思路,实现了锂电池寿命的端到端评估。
  1. 该模型作为团队开发的第一代电池数字大脑 PBSRD Digit 核心模型的组成部分,为电池智能管理提供了解决方案。

    中国科学院大连化物所等开发出用于电池寿命预测的深度学习模型

    1. 基于深度学习的电池寿命预测模型

该研究提出了基于少量充电周期数据的深度学习模型。这一模型通过 Vision Transformer 结构和高效自注意力机制,捕捉并融合多时间尺度隐藏特征,实现对电池 当前循环寿命剩余使用寿命 的准确预测。

  1. 预测精度和泛化能力

同时,该模型在使用 15 个充电周期数据的情况下,将剩余使用寿命和当前循环寿命的预测误差分别控制在 5.40% 和 4.64% 以内。此外,在面对训练数据集未出现的充电策略时,该模型仍能够保持较低的预测误差,证明了其 zero-short 泛化能力

  1. 与电池数字大脑的集成

这一电池寿命预测模型是第一代电池数字大脑 PBSRD Digit 的组成部分。研究人员通过将上述模型整合到该系统中,进一步提高了系统的准确性。

  1. 部署和应用

目前,该电池数字大脑系统作为大规模工商业储能和电动汽车的能量管理核心,可部署于云端服务器和客户端嵌入式设备。

  1. 模型优化

这一模型平衡了预测准确率和计算成本,提高了电池数字大脑对于 寿命预估 的应用价值。未来,该团队将通过模型蒸馏、剪枝等方法进一步优化模型,从而提高系统的鲁棒性和资源利用率。

到这里,我们也就讲完了《中国科学院大连化物所等开发出用于电池寿命预测的深度学习模型》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于深度学习,电池,中国科学院的知识点!

声明:本文转载于:IT之家 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>