实施相似性搜索算法
来源:dev.to
时间:2024-10-24 14:27:34 189浏览 收藏
哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《实施相似性搜索算法》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!
获取数据
import pandas as pd descripciones = [ 'all users must reset passwords every 90 days.', 'passwords need to be reset by all users every 90 days.', 'admin access should be restricted.', 'passwords must change for users every 90 days.', 'passwords must change for users every 80 days.' ] # cargar el dataset data = pd.dataframe({ 'rule_id': range(1, len(descripciones) + 1), 'description': descripciones })
词汇相似度
from sklearn.feature_extraction.text import tfidfvectorizer from sklearn.metrics.pairwise import cosine_similarity ! # vectorización de las descripciones con tf-idf vectorizer = tfidfvectorizer().fit_transform(data['description']) # calcular la matriz de similitud de coseno cosine_sim_matrix = cosine_similarity(vectorizer) # crear un diccionario para almacenar las relaciones sin duplicados def find_related_rules(matrix, rule_ids, threshold=0.8): related_rules = {} seen_pairs = set() # para evitar duplicados de la forma (a, b) = (b, a) for i in range(len(matrix)): related = [] for j in range(i + 1, len(matrix)): # j comienza en i + 1 para evitar duplicados if matrix[i, j] >= threshold: pair = (rule_ids[i], rule_ids[j]) if pair not in seen_pairs: seen_pairs.add(pair) related.append((rule_ids[j], round(matrix[i, j], 2))) if related: related_rules[rule_ids[i]] = related return related_rules # aplicar la función para encontrar reglas relacionadas related_rules = find_related_rules(cosine_sim_matrix, data['rule_id'].tolist(), threshold=0.8) # mostrar las reglas relacionadas print("reglas relacionadas por similitud:") for rule, relations in related_rules.items(): print(f"rule {rule} es similar a:") for related_rule, score in relations: print(f" - rule {related_rule} con similitud de {score}")
语义相似度
!pip install sentence-transformers from sentence_transformers import SentenceTransformer, util # Load the pre-trained model for generating embeddings model = SentenceTransformer('all-MiniLM-L6-v2') # Generate sentence embeddings for each rule description embeddings = model.encode(data['Description'], convert_to_tensor=True) # Compute the semantic similarity matrix cosine_sim_matrix = util.cos_sim(embeddings, embeddings).cpu().numpy() # Function to find related rules based on semantic similarity def find_related_rules(matrix, rule_ids, threshold=0.8): related_rules = {} seen_pairs = set() # To avoid duplicates of the form (A, B) = (B, A) for i in range(len(matrix)): related = [] for j in range(i + 1, len(matrix)): # Only consider upper triangular matrix if matrix[i, j] >= threshold: pair = (rule_ids[i], rule_ids[j]) if pair not in seen_pairs: seen_pairs.add(pair) related.append((rule_ids[j], round(matrix[i, j], 2))) if related: related_rules[rule_ids[i]] = related return related_rules # Apply the function to find related rules related_rules = find_related_rules(cosine_sim_matrix, data['Rule_ID'].tolist(), threshold=0.8) # Display the related rules print("Reglas relacionadas por similitud semántica:") for rule, relations in related_rules.items(): print(f"Rule {rule} es similar a:") for related_rule, score in relations: print(f" - Rule {related_rule} con similitud de {score}")
到这里,我们也就讲完了《实施相似性搜索算法》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!
声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
406 收藏
-
356 收藏
-
146 收藏
-
466 收藏
-
426 收藏
-
487 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习