使用Redis有序集合实现IP归属地查询详解
来源:脚本之家
时间:2023-01-22 07:58:28 282浏览 收藏
亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《使用Redis有序集合实现IP归属地查询详解》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下IP、Redis有序集合,希望所有认真读完的童鞋们,都有实质性的提高。
工作中经常遇到一类需求,根据 IP 地址段来查找 IP 对应的归属地信息。如果把查询过程放到关系型数据库中,会带来很大的 IO 消耗,速度也不能满足,显然是不合适的。
那有哪些更好的办法呢?为此做了一些尝试,下面来详细说明。
构建索引文件
在 GitHub 上看到一个ip2region 项目,作者通过生成一个包含有二级索引的文件来实现快速查询,查询速度足够快,毫秒级别。但如果想更新地址段或归属地信息,每次都要重新生成文件,并不是很方便。
不过还是推荐大家看看这个项目,其中建索引的思想还是很值得学习的。作者的开源项目中只有查询的相关代码,并没有生成索引文件的代码,我依照原理图写了一段生成索引文件的代码,如下:
# -*- coding:utf-8 -*-
import time
import socket
import struct
IP_REGION_FILE = './data/ip_to_region.db'
SUPER_BLOCK_LENGTH = 8
INDEX_BLOCK_LENGTH = 12
HEADER_INDEX_LENGTH = 8192
def generate_db_file():
pointer = SUPER_BLOCK_LENGTH + HEADER_INDEX_LENGTH
region, index = '', ''
# 文件格式
# 1.0.0.0|1.0.0.255|澳大利亚|0|0|0|0
# 1.0.1.0|1.0.3.255|中国|0|福建省|福州市|电信
with open('./ip.merge.txt', 'r') as f:
for line in f.readlines():
item = line.strip().split('|')
print item[0], item[1], item[2], item[3], item[4], item[5], item[6]
start_ip = struct.pack('I', struct.unpack('!L', socket.inet_aton(item[0]))[0])
end_ip = struct.pack('I', struct.unpack('!L', socket.inet_aton(item[1]))[0])
region_item = '|'.join([item[2], item[3], item[4], item[5], item[6]])
region += region_item
ptr = struct.pack('I', int(bin(len(region_item))[2:].zfill(8) + bin(pointer)[2:].zfill(24), 2))
index += start_ip + end_ip + ptr
pointer += len(region_item)
index_start_ptr = pointer
index_end_ptr = pointer + len(index) - 12
super_block = struct.pack('I', index_start_ptr) + struct.pack('I', index_end_ptr)
n = 0
header_index = ''
for index_block in range(pointer, index_end_ptr, 8184):
header_index_block_ip = index[n * 8184:n * 8184 + 4]
header_index_block_ptr = index_block
header_index += header_index_block_ip + struct.pack('I', header_index_block_ptr)
n += 1
header_index += index[len(index) - 12: len(index) - 8] + struct.pack('I', index_end_ptr)
with open(IP_REGION_FILE, 'wb') as f:
f.write(super_block)
f.write(header_index)
f.seek(SUPER_BLOCK_LENGTH + HEADER_INDEX_LENGTH, 0)
f.write(region)
f.write(index)
if __name__ == '__main__':
start_time = time.time()
generate_db_file()
print 'cost time: ', time.time() - start_time
使用 Redis 缓存
目前有两种方式对 IP 以及归属地信息进行缓存:
第一种是将起始 IP,结束 IP 以及中间所有 IP 转换成整型,然后以字符串方式,用转换后的 IP 作为 key,归属地信息作为 value 存入 Redis;
第二种是采用有序集合和散列方式,首先将起始 IP 和结束 IP 添加到有序集合 ip2cityid,城市 ID 作为成员,转换后的 IP 作为分值,然后再将城市 ID 和归属地信息添加到散列 cityid2city,城市 ID 作为 key,归属地信息作为 value。
第一种方式就不多做介绍了,简单粗暴,非常不推荐。查询速度当然很快,毫秒级别,但缺点也十分明显,我用 1000 条数据做了测试,缓存时间长,大概 20 分钟,占用空间大,将近 1G。
下面介绍第二种方式,直接看代码:
# generate_to_redis.py
# -*- coding:utf-8 -*-
import time
import json
from redis import Redis
def ip_to_num(x):
return sum([256 ** j * int(i) for j, i in enumerate(x.split('.')[::-1])])
# 连接 Redis
conn = Redis(host='127.0.0.1', port=6379, db=10)
start_time = time.time()
# 文件格式
# 1.0.0.0|1.0.0.255|澳大利亚|0|0|0|0
# 1.0.1.0|1.0.3.255|中国|0|福建省|福州市|电信
with open('./ip.merge.txt', 'r') as f:
i = 1
for line in f.readlines():
item = line.strip().split('|')
# 将起始 IP 和结束 IP 添加到有序集合 ip2cityid
# 成员分别是城市 ID 和 ID + #, 分值是根据 IP 计算的整数值
conn.zadd('ip2cityid', str(i), ip_to_num(item[0]), str(i) + '#', ip_to_num(item[1]) + 1)
# 将城市信息添加到散列 cityid2city,key 是城市 ID,值是城市信息的 json 序列
conn.hset('cityid2city', str(i), json.dumps([item[2], item[3], item[4], item[5]]))
i += 1
end_time = time.time()
print 'start_time: ' + str(start_time) + ', end_time: ' + str(end_time) + ', cost time: ' + str(end_time - start_time)
# test.py
# -*- coding:utf-8 -*-
import sys
import time
import json
import socket
import struct
from redis import Redis
# 连接 Redis
conn = Redis(host='127.0.0.1', port=6379, db=10)
# 将 IP 转换成整数
ip = struct.unpack("!L", socket.inet_aton(sys.argv[1]))[0]
start_time = time.time()
# 将有序集合从大到小排序,取小于输入 IP 值的第一条数据
cityid = conn.zrevrangebyscore('ip2cityid', ip, 0, start=0, num=1)
# 如果返回 cityid 是空,或者匹配到了 # 号,说明没有找到对应地址段
if not cityid or cityid[0].endswith('#'):
print 'no city info...'
else:
# 根据城市 ID 到散列表取出城市信息
ret = json.loads(conn.hget('cityid2city', cityid[0]))
print ret[0], ret[1], ret[2]
end_time = time.time()
print 'start_time: ' + str(start_time) + ', end_time: ' + str(end_time) + ', cost time: ' + str(end_time - start_time)
# python generate_to_redis.py start_time: 1554300310.31, end_time: 1554300425.65, cost time: 115.333260059
# python test_2.py 1.0.16.0 日本 0 0 start_time: 1555081532.44, end_time: 1555081532.45, cost time: 0.000912189483643
测试数据大概 50 万条,缓存所用时间不到 2 分钟,占用内存 182M,查询速度毫秒级别。显而易见,这种方式更值得尝试。
zrevrangebyscore 方法的时间复杂度是 O(log(N)+M), N 为有序集的基数, M 为结果集的基数。可见当 N 的值越大,查询效率越慢,具体在多大的数据量还可以高效查询,这个有待验证。不过这个问题我觉得并不用担心,遇到了再说吧。
以上所述是小编给大家介绍的使用Redis有序集合实现IP归属地查询详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对golang学习网网站的支持!
到这里,我们也就讲完了《使用Redis有序集合实现IP归属地查询详解》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于redis的知识点!
-
166 收藏
-
142 收藏
-
480 收藏
-
252 收藏
-
112 收藏
-
252 收藏
-
302 收藏
-
325 收藏
-
157 收藏
-
257 收藏
-
398 收藏
-
232 收藏
-
283 收藏
-
141 收藏
-
312 收藏
-
195 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习