教你在Kubernetes上部署Redis高可用集群
来源:51cto
时间:2023-02-24 18:10:20 229浏览 收藏
对于一个数据库开发者来说,牢固扎实的基础是十分重要的,golang学习网就来带大家一点点的掌握基础知识点。今天本篇文章带大家了解《教你在Kubernetes上部署Redis高可用集群》,主要介绍了Redis、数据库、kubernetes,希望对大家的知识积累有所帮助,快点收藏起来吧,否则需要时就找不到了!
Redis 介绍
Redis 代表REmote DIctionary Server是一种开源的内存中数据存储,通常用作数据库,缓存或消息代理。它可以存储和操作高级数据类型,例如列表,地图,集合和排序集合。由于Redis接受多种格式的密钥,因此可以在服务器上执行操作,从而减少了客户端的工作量。它仅将磁盘用于持久性,而将数据库完全保存在内存中。Redis是一种流行的数据存储解决方案,并被GitHub,Pinterest,Snapchat,Twitter,StackOverflow,Flickr等技术巨头所使用。
为什么使用 Redis
- 它的速度非常快。它是用 ANSI C 编写的,并且可以在 POSIX 系统上运行,例如 Linux,Mac OS X 和 Solaris。
- Redis 通常被排名为最流行的键/值数据库和最流行的与容器一起使用的 NoSQL 数据库。
- 其缓存解决方案减少了对云数据库后端的调用次数。
- 应用程序可以通过其客户端 API 库对其进行访问。
- 所有流行的编程语言都支持 Redis。
- 它是开源且稳定的。
什么是 Redis 集群
Redis Cluster 是一组 Redis 实例,旨在通过对数据库进行分区来扩展数据库,从而使其更具弹性。群集中的每个成员(无论是主副本还是辅助副本)都管理哈希槽的子集。如果主机无法访问,则其从机将升级为主机。在由三个主节点组成的最小 Redis 群集中,每个主节点都有一个从节点(以实现最小的故障转移),每个主节点都分配有一个介于 0 到 16,383 之间的哈希槽范围。节点 A 包含从 0 到 5000 的哈希槽,节点 B 从 5001 到 10000,节点 C 从 10001 到 16383。群集内部的通信是通过内部总线进行的,使用协议传播有关群集的信息或发现新节点。
在 Kubernetes 中部署 Redis 集群
在Kubernetes中部署Redis集群面临挑战,因为每个 Redis 实例都依赖于一个配置文件,该文件可以跟踪其他集群实例及其角色。为此,我们需要结合使用Kubernetes StatefulSets和PersistentVolumes。
克隆部署文件
- git clone https://github.com/llmgo/redis-sts.git
创建 statefulset 类型资源
- [root@node01 redis-sts]# cat redis-sts.yml
- ---
- apiVersion: v1
- kind: ConfigMap
- metadata:
- name: redis-cluster
- data:
- update-node.sh: |
- #!/bin/sh
- REDIS_NODES="/data/nodes.conf"
- sed -i -e "/myself/ s/[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}\.[0-9]\{1,3\}/${POD_IP}/" ${REDIS_NODES}
- exec "$@"
- redis.conf: |+
- cluster-enabled yes
- cluster-require-full-coverage no
- cluster-node-timeout 15000
- cluster-config-file /data/nodes.conf
- cluster-migration-barrier 1
- appendonly yes
- protected-mode no
- ---
- apiVersion: apps/v1
- kind: StatefulSet
- metadata:
- name: redis-cluster
- spec:
- serviceName: redis-cluster
- replicas: 6
- selector:
- matchLabels:
- app: redis-cluster
- template:
- metadata:
- labels:
- app: redis-cluster
- spec:
- containers:
- - name: redis
- image: redis:5.0.5-alpine
- ports:
- - containerPort: 6379
- name: client
- - containerPort: 16379
- name: gossip
- command: ["/conf/update-node.sh", "redis-server", "/conf/redis.conf"]
- env:
- - name: POD_IP
- valueFrom:
- fieldRef:
- fieldPath: status.podIP
- volumeMounts:
- - name: conf
- mountPath: /conf
- readOnly: false
- - name: data
- mountPath: /data
- readOnly: false
- volumes:
- - name: conf
- configMap:
- name: redis-cluster
- defaultMode: 0755
- volumeClaimTemplates:
- - metadata:
- name: data
- spec:
- accessModes: [ "ReadWriteOnce" ]
- resources:
- requests:
- storage: 5Gi
- storageClassName: standard
- $ kubectl apply -f redis-sts.yml
- configmap/redis-cluster created
- statefulset.apps/redis-cluster created
- $ kubectl get pods -l app=redis-cluster
- NAME READY STATUS RESTARTS AGE
- redis-cluster-0 1/1 Running 0 53s
- redis-cluster-1 1/1 Running 0 49s
- redis-cluster-2 1/1 Running 0 46s
- redis-cluster-3 1/1 Running 0 42s
- redis-cluster-4 1/1 Running 0 38s
- redis-cluster-5 1/1 Running 0 34s
创建 service
- [root@node01 redis-sts]# cat redis-svc.yml
- ---
- apiVersion: v1
- kind: Service
- metadata:
- name: redis-cluster
- spec:
- type: ClusterIP
- clusterIP: 10.96.0.100
- ports:
- - port: 6379
- targetPort: 6379
- name: client
- - port: 16379
- targetPort: 16379
- name: gossip
- selector:
- app: redis-cluster
- $ kubectl apply -f redis-svc.yml
- service/redis-cluster created
- $ kubectl get svc redis-cluster
- NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
- redis-cluster ClusterIP 10.96.0.100 none> 6379/TCP,16379/TCP 35s
初始化 redis cluster
“ 下一步是形成Redis集群。为此,我们运行以下命令并键入yes以接受配置。前三个节点成为主节点,后三个节点成为从节点。
- $ kubectl exec -it redis-cluster-0 -- redis-cli --cluster create --cluster-replicas 1 $(kubectl get pods -l app=redis-cluster -o jsonpath='{range.items[*]}{.status.podIP}:6379 ')
- >>> Performing hash slots allocation on 6 nodes...
- Master[0] -> Slots 0 - 5460
- Master[1] -> Slots 5461 - 10922
- Master[2] -> Slots 10923 - 16383
- Adding replica 10.244.2.11:6379 to 10.244.9.19:6379
- Adding replica 10.244.9.20:6379 to 10.244.6.10:6379
- Adding replica 10.244.8.15:6379 to 10.244.7.8:6379
- M: 00721c43db194c8f2cacbafd01fd2be6a2fede28 10.244.9.19:6379
- slots:[0-5460] (5461 slots) master
- M: 9c36053912dec8cb20a599bda202a654f241484f 10.244.6.10:6379
- slots:[5461-10922] (5462 slots) master
- M: 2850f24ea6367de58fb50e632fc56fe4ba5ef016 10.244.7.8:6379
- slots:[10923-16383] (5461 slots) master
- S: 554a58762e3dce23ca5a75886d0ccebd2d582502 10.244.8.15:6379
- replicates 2850f24ea6367de58fb50e632fc56fe4ba5ef016
- S: 20028fd0b79045489824eda71fac9898f17af896 10.244.2.11:6379
- replicates 00721c43db194c8f2cacbafd01fd2be6a2fede28
- S: 87e8987e314e4e5d4736e5818651abc1ed6ddcd9 10.244.9.20:6379
- replicates 9c36053912dec8cb20a599bda202a654f241484f
- Can I set the above configuration? (type 'yes' to accept): yes
- >>> Nodes configuration updated
- >>> Assign a different config epoch to each node
- >>> Sending CLUSTER MEET messages to join the cluster
- Waiting for the cluster to join
- ...
- >>> Performing Cluster Check (using node 10.244.9.19:6379)
- M: 00721c43db194c8f2cacbafd01fd2be6a2fede28 10.244.9.19:6379
- slots:[0-5460] (5461 slots) master
- 1 additional replica(s)
- M: 9c36053912dec8cb20a599bda202a654f241484f 10.244.6.10:6379
- slots:[5461-10922] (5462 slots) master
- 1 additional replica(s)
- S: 87e8987e314e4e5d4736e5818651abc1ed6ddcd9 10.244.9.20:6379
- slots: (0 slots) slave
- replicates 9c36053912dec8cb20a599bda202a654f241484f
- S: 554a58762e3dce23ca5a75886d0ccebd2d582502 10.244.8.15:6379
- slots: (0 slots) slave
- replicates 2850f24ea6367de58fb50e632fc56fe4ba5ef016
- S: 20028fd0b79045489824eda71fac9898f17af896 10.244.2.11:6379
- slots: (0 slots) slave
- replicates 00721c43db194c8f2cacbafd01fd2be6a2fede28
- M: 2850f24ea6367de58fb50e632fc56fe4ba5ef016 10.244.7.8:6379
- slots:[10923-16383] (5461 slots) master
- 1 additional replica(s)
- [OK] All nodes agree about slots configuration.
- >>> Check for open slots...
- >>> Check slots coverage...
- [OK] All 16384 slots covered.
验证集群
- [root@node01 redis-sts]# kubectl exec -it redis-cluster-0 -- redis-cli cluster info
- cluster_state:ok
- cluster_slots_assigned:16384
- cluster_slots_ok:16384
- cluster_slots_pfail:0
- cluster_slots_fail:0
- cluster_known_nodes:6
- cluster_size:3
- cluster_current_epoch:6
- cluster_my_epoch:1
- cluster_stats_messages_ping_sent:16
- cluster_stats_messages_pong_sent:22
- cluster_stats_messages_sent:38
- cluster_stats_messages_ping_received:17
- cluster_stats_messages_pong_received:16
- cluster_stats_messages_meet_received:5
- cluster_stats_messages_received:38
- [root@node01 redis-sts]# for x in $(seq 0 5); do echo "redis-cluster-$x"; kubectl exec redis-cluster-$x -- redis-cli role; echo; done
- redis-cluster-0
- master
- 14
- 10.244.2.11
- 6379
- 14
- redis-cluster-1
- master
- 28
- 10.244.9.20
- 6379
- 28
- redis-cluster-2
- master
- 28
- 10.244.8.15
- 6379
- 28
- redis-cluster-3
- slave
- 10.244.7.8
- 6379
- connected
- 28
- redis-cluster-4
- slave
- 10.244.9.19
- 6379
- connected
- 14
- redis-cluster-5
- slave
- 10.244.6.10
- 6379
- connected
- 28
测试集群
我们想使用集群,然后模拟节点的故障。对于前一项任务,我们将部署一个简单的 Python 应用程序,而对于后者,我们将删除一个节点并观察集群行为。
部署点击计数器应用
我们将一个简单的应用程序部署到集群中,并在其前面放置一个负载平衡器。此应用程序的目的是在将计数器值作为 HTTP 响应返回之前,增加计数器并将其存储在 Redis 集群中。
- $ kubectl apply -f app-deployment-service.yml
- service/hit-counter-lb created
- deployment.apps/hit-counter-app created
在此过程中,如果我们继续加载页面,计数器将继续增加,并且在删除Pod之后,我们看到没有数据丢失。
- $ curl `kubectl get svc hit-counter-lb -o json|jq -r .spec.clusterIP`
- I have been hit 20 times since deployment.
- $ curl `kubectl get svc hit-counter-lb -o json|jq -r .spec.clusterIP`
- I have been hit 21 times since deployment.
- $ curl `kubectl get svc hit-counter-lb -o json|jq -r .spec.clusterIP`
- I have been hit 22 times since deployment.
- $ kubectl delete pods redis-cluster-0
- pod "redis-cluster-0" deleted
- $ kubectl delete pods redis-cluster-1
- pod "redis-cluster-1" deleted
- $ curl `kubectl get svc hit-counter-lb -o json|jq -r .spec.clusterIP`
- I have been hit 23 times since deployment
到这里,我们也就讲完了《教你在Kubernetes上部署Redis高可用集群》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于redis的知识点!
-
286 收藏
-
235 收藏
-
117 收藏
-
138 收藏
-
185 收藏
-
342 收藏
-
361 收藏
-
159 收藏
-
164 收藏
-
221 收藏
-
156 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习