登录
首页 >  文章 >  python教程

计算机视觉数据集 (2)

来源:dev.to

时间:2024-11-22 14:54:40 176浏览 收藏

编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《计算机视觉数据集 (2)》,文章讲解的知识点主要包括,如果你对文章方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

请我喝杯咖啡☕

*我的帖子解释了 MNIST、EMNIST、QMNIST、ETLCDB、Kuzushiji 和 Moving MNIST。

(1) 时尚-MNIST(2017):

  • 有 70,000 张时尚图像,每个图像都连接到 10 个类别的标签: *备注:
    • 火车 60,000,测试 10,000。
    • 每个图像都是 28x28 像素。
  • 是 PyTorch 中的 FashionMNIST()。

计算机视觉数据集 (2)

(2) 加州理工学院 101(2003):

  • 有 8,677 个对象图像,每个图像都连接到来自 101 个类别(类)的标签。 *每张图像大约为 300x200 像素。
  • 是 PyTorch 中的 Caltech101()。

计算机视觉数据集 (2)

(3) 加州理工学院 256(2007):

  • 有 30,607 个对象图像连接到来自 257 个类别(类)的标签。 *实际上,它有 257 个类别(类别),名称为 Caltech 256
  • 是 PyTorch 中的 Caltech256()。

计算机视觉数据集 (2)

计算机视觉数据集 (2)

(4) CelebA(大规模 CelebFaces 属性)(2015):

  • 有 202,599 张名人脸部图像,每个图像都与 40 个属性相关: *备注:
    • 162,770 用于训练,19,867 用于验证,19,962 用于测试。
    • 建议直接从Google Drive下载,因为从Google Drive使用Google Drive API下载太拥挤。
  • 是 PyTorch 中的 CelebA()。

计算机视觉数据集 (2)

(5) CIFAR-10(加拿大高级研究所-10)(2009):

  • 有 60,000 张车辆和动物图像,每个图像都连接到 10 个类别的标签: *备注:
    • 火车 50,000,测试 10,000。
    • 每张图像为 32x32 像素。
  • 是 PyTorch 中的 CIFAR10()。

计算机视觉数据集 (2)

(6) CIFAR-100(加拿大高级研究所-100)(2009):

  • 有 60,000 个对象图像,每个图像都连接到来自 100 个类的标签: *备注:
    • 火车 50,000,测试 10,000。
    • 每张图像为 32x32 像素。
  • 是 PyTorch 中的 CIFAR100()。

计算机视觉数据集 (2)

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《计算机视觉数据集 (2)》文章吧,也可关注golang学习网公众号了解相关技术文章。

声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>