用 Python 从头开始实现感知器
来源:dev.to
时间:2024-11-27 13:42:43 123浏览 收藏
你在学习文章相关的知识吗?本文《用 Python 从头开始实现感知器》,主要介绍的内容就涉及到,如果你想提升自己的开发能力,就不要错过这篇文章,大家要知道编程理论基础和实战操作都是不可或缺的哦!
开发者们大家好,
感知器是机器学习中最简单、最基本的概念之一。它是构成神经网络基础的二元线性分类器。在这篇文章中,我将逐步介绍使用 python 从头开始理解和实现感知器的步骤。
让我们开始吧!
什么是感知器?
a 感知器 是二元分类器监督学习的基本算法。给定输入特征,感知器学习权重,帮助基于简单的阈值函数分离类别。简单来说它的工作原理如下:
- 输入:特征向量(例如,[x1, x2])。
- 权重:每个输入特征都有一个权重,模型根据模型的表现来调整权重。
- 激活函数:计算输入特征的加权和并应用阈值来决定结果是否属于一个类或另一类。
从数学上来说,它看起来像这样:
f(x) = w1*x1 + w2*x2 + ... + wn*xn + b
地点:
- f(x) 是输出,
- w代表权重,
- x 代表输入特征,
- b 是偏差项。
如果 f(x) 大于或等于阈值,则输出为类别 1;否则,它是 0 类。
第 1 步:导入库
这里我们将仅使用 numpy 进行矩阵运算,以保持轻量级。
import numpy as np
第 2 步:定义感知器类
我们将把感知器构建为一个类,以保持一切井井有条。该课程将包括训练和预测方法。
class perceptron: def __init__(self, learning_rate=0.01, epochs=1000): self.learning_rate = learning_rate self.epochs = epochs self.weights = none self.bias = none def fit(self, x, y): # number of samples and features n_samples, n_features = x.shape # initialize weights and bias self.weights = np.zeros(n_features) self.bias = 0 # training for _ in range(self.epochs): for idx, x_i in enumerate(x): # calculate linear output linear_output = np.dot(x_i, self.weights) + self.bias # apply step function y_predicted = self._step_function(linear_output) # update weights and bias if there is a misclassification if y[idx] != y_predicted: update = self.learning_rate * (y[idx] - y_predicted) self.weights += update * x_i self.bias += update def predict(self, x): # calculate linear output and apply step function linear_output = np.dot(x, self.weights) + self.bias y_predicted = self._step_function(linear_output) return y_predicted def _step_function(self, x): return np.where(x >= 0, 1, 0)
在上面的代码中:
- fit:此方法通过在错误分类点时调整权重和偏差来训练模型。
- 预测:此方法计算新数据的预测。
- _step_function:此函数应用阈值来确定输出类别。
第 3 步:准备一个简单的数据集
我们将使用一个小数据集来轻松可视化输出。这是一个简单的与门数据集:
# and gate dataset x = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([0, 0, 0, 1]) # labels for and gate
第 4 步:训练和测试感知器
现在,让我们训练感知器并测试它的预测。
# initialize perceptron p = perceptron(learning_rate=0.1, epochs=10) # train the model p.fit(x, y) # test the model print("predictions:", p.predict(x))
与门的预期输出:
Predictions: [0 0 0 1]
感知器学习过程的解释
- 初始化权重和偏差:开始时,权重设置为零,这允许模型从头开始学习。
- 计算线性输出:对于每个数据点,感知器计算输入的加权和加上偏差。
- 激活(step function):如果线性输出大于或等于0,则分配类别1;否则,它分配类 0。
- 更新规则:如果预测不正确,模型会朝减少误差的方向调整权重和偏差。更新规则由下式给出: 权重 += 学习率 * (y_true - y_pred) * x
这使得感知器仅更新错误分类的点,逐渐推动模型更接近正确的决策边界。
可视化决策边界
训练后可视化决策边界。如果您正在处理更复杂的数据集,这尤其有用。现在,我们将使用 and 门让事情变得简单。
扩展到多层感知器 (mlp)
虽然感知器仅限于线性可分离问题,但它是多层感知器 (mlp) 等更复杂神经网络的基础。通过 mlp,我们添加隐藏层和激活函数(如 relu 或 sigmoid)来解决非线性问题。
概括
感知器是一种简单但基础的机器学习算法。通过了解它的工作原理并从头开始实施它,我们深入了解机器学习和神经网络的基础知识。感知器的美妙之处在于它的简单性,使其成为任何对人工智能感兴趣的人的完美起点。
终于介绍完啦!小伙伴们,这篇关于《用 Python 从头开始实现感知器》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
434 收藏
-
276 收藏
-
255 收藏
-
471 收藏
-
155 收藏
-
488 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习