PyTorch 中的 CIFAR
来源:dev.to
时间:2024-12-17 22:00:42 226浏览 收藏
亲爱的编程学习爱好者,如果你点开了这篇文章,说明你对《PyTorch 中的 CIFAR》很感兴趣。本篇文章就来给大家详细解析一下,主要介绍一下,希望所有认真读完的童鞋们,都有实质性的提高。
请我喝杯咖啡☕
*我的帖子解释了 cifar-10。
cifar10()可以使用cifar-10数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
- 第二个参数是 train(optional-default:true-type:bool)。 *如果为 true,则使用训练数据(50,000 张图像),如果为 false,则使用测试数据(10,000 张图像)。
- 第三个参数是transform(optional-default:none-type:callable)。
- 第四个参数是 target_transform(optional-default:none-type:callable)。
- 第五个参数是 download(optional-default:false-type:bool):
*备注:
- 如果为 true,则从互联网下载数据集并解压(解压)到根目录。
- 如果为 true 并且数据集已下载,则将其提取。
- 如果为 true 并且数据集已下载并提取,则不会发生任何事情。
- 如果数据集已经下载并提取,则应该为 false,因为它速度更快。
- 您可以从这里手动下载并提取数据集(cifar-10-python.tar.gz)到data/cifar-10-batches-py/。
from torchvision.datasets import CIFAR10
train_data = CIFAR10(
root="data"
)
train_data = CIFAR10(
root="data",
train=True,
transform=None,
target_transform=None,
download=False
)
test_data = CIFAR10(
root="data",
train=False
)
len(train_data), len(test_data)
# (50000, 10000)
train_data
# Dataset CIFAR10
# Number of datapoints: 50000
# Root location: data
# Split: Train
train_data.root
# 'data'
train_data.train
# True
print(train_data.transform)
# None
print(train_data.target_transform)
# None
train_data.download
# bound method CIFAR10.download of Dataset CIFAR10
# Number of datapoints: 50000
# Root location: data
# Split: Train>
len(train_data.classes)
# 10
train_data.classes
# ['airplane', 'automobile', 'bird', 'cat', 'deer',
# 'dog', 'frog', 'horse', 'ship', 'truck']
train_data[0]
# (<PIL.Image.Image image mode=RGB size=32x32>, 6)
train_data[1]
# (<PIL.Image.Image image mode=RGB size=32x32>, 9)
train_data[2]
# (<PIL.Image.Image image mode=RGB size=32x32>, 9)
train_data[3]
# (<PIL.Image.Image image mode=RGB size=32x32>, 4)
train_data[4]
# (<PIL.Image.Image image mode=RGB size=32x32>, 1)
import matplotlib.pyplot as plt
def show_images(data, main_title=None):
plt.figure(figsize=(10, 5))
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, (im, lab) in enumerate(data, start=1):
plt.subplot(2, 5, i)
plt.title(label=lab)
plt.imshow(X=im)
if i == 10:
break
plt.tight_layout()
plt.show()
show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")


以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
165 收藏
-
449 收藏
-
216 收藏
-
325 收藏
-
300 收藏
-
337 收藏
-
385 收藏
-
165 收藏
-
254 收藏
-
427 收藏
-
149 收藏
-
190 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习