登录
首页 >  文章 >  python教程

计算机视觉数据集 (5)

时间:2024-12-20 18:13:06 271浏览 收藏

哈喽!大家好,很高兴又见面了,我是golang学习网的一名作者,今天由我给大家带来一篇《计算机视觉数据集 (5)》,本文主要会讲到等等知识点,希望大家一起学习进步,也欢迎大家关注、点赞、收藏、转发! 下面就一起来看看吧!

这篇文章介绍了多个常用的计算机视觉数据集,涵盖图像和视频领域,并简要说明了其应用场景。以下是对文章内容的整理和润色:

常用计算机视觉数据集概述

本文总结了多个在计算机视觉领域广泛应用的数据集,这些数据集用于训练和评估各种图像和视频相关的算法。 它们在图像分类、目标检测、语义分割等任务中扮演着关键角色。

图像数据集:

  • PASCAL VOC (Visual Object Classes) (2005-2012): 该数据集包含多个版本 (VOC2005-VOC2012),包含图像和相应的目标标注。类别数量从4个到20个不等,图像数量也随版本递增。 它常用于目标检测和图像分割任务。 PyTorch 提供了 VOCSegmentation()VOCDetection() 用于访问该数据集。

计算机视觉数据集 (5)

  • SUN Database (Scene Understanding Database) (2010): 也称为 SUN397,包含超过10万张场景图像,涵盖397个类别。 主要用于场景识别任务。 在 PyTorch 中,可以使用 SUN397() 访问。

计算机视觉数据集 (5)

  • Cityscapes (2016): 包含25,000张城市街景图像,其中5,000张进行了精细标注,20,000张进行了粗略标注,共30个类别。 主要用于语义图像分割。 PyTorch 提供 Cityscapes() 用于访问,但具体使用方法未在此文中详细说明。

精细标注图像示例:

计算机视觉数据集 (5)

粗略标注图像示例:

计算机视觉数据集 (5)

视频数据集:

  • Kinetics (2017-2019): 包含多个版本 (Kinetics-400, Kinetics-600, Kinetics-700),包含大量的短视频片段,每个片段持续约10秒,并带有动作类别标签。 主要用于视频分类任务。 PyTorch 提供 Kinetics() 函数访问。

计算机视觉数据集 (5)

(其他数据集,原文已提及但未展开,此处略去)

本文简要介绍了几个重要的计算机视觉数据集,为研究者提供了一个便捷的参考。 更详细的信息,请参考各个数据集的官方网站。

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《计算机视觉数据集 (5)》文章吧,也可关注golang学习网公众号了解相关技术文章。

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>