登录
首页 >  文章 >  python教程

PyTorch 中的斯坦福汽车

来源:dev.to

时间:2024-12-23 11:36:41 273浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《PyTorch 中的斯坦福汽车》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

请我喝杯咖啡☕

*我的帖子解释了斯坦福汽车。

stanfordcars()可以使用stanford cars数据集,如下所示:

*备忘录:

  • 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
  • 第二个参数是 split(可选-默认:"train"-类型:str)。 *可以设置“train”(8,144张图片)或“test”(8,041张图片)。
  • 第三个参数是transform(optional-default:none-type:callable)。
  • 第四个参数是 target_transform(optional-default:none-type:callable)。
  • 第五个参数是 download(optional-default:false-type:bool): *备注:
    • 保留为 false,因为如果为 true,则会发生错误,因为原始 url 已损坏。
    • 因此,您需要从这里手动下载并解压 archive.zip,从这里解压 archive.zip 以及 car_devkit.tgz 到 data/stanford_cars/ ,如下所示: *备注:
      • cars_test_annos_withlabels (1).mat 需要重命名为 cars_test_annos_withlabels.mat。
      • cars_annos.mat 和 cars_annos (2).mat 不需要,并且还有一些重复的文件。
      • 您还可以查看说明。
data
 └-stanford_cars
    |-cars_test_annos_withlabels.mat
    |-cars_test
    |  └-*.jpg
    |-cars_train
    |  └-*.jpg
    └-devkit
       |-cars_meta.mat
       |-cars_test_annos.mat
       |-cars_train_annos.mat
       |-eval_train.m
       |-readme.txt
       └-train_perfect_preds.txt
from torchvision.datasets import StanfordCars

train_data = StanfordCars(
    root="data"
)

train_data = StanfordCars(
    root="data",
    split="train",
    transform=None,
    target_transform=None,
    download=False
)

test_data = StanfordCars(
    root="data",
    split="test"
)

len(train_data), len(test_data)
# (8144, 8041)

train_data
# Dataset StanfordCars
#     Number of datapoints: 8144
#     Root location: data

train_data.root
# 'data'

train_data._split
# 'train'

print(train_data.transform)
# None

print(train_data.target_transform)
# None

train_data.download
# <bound method StanfordCars.download of Dataset StanfordCars
#     Number of datapoints: 8144
#     Root location: data>

len(train_data.classes), train_data.classes
# (196,
#  ['AM General Hummer SUV 2000', 'Acura RL Sedan 2012', 'Acura TL Sedan 2012',
#   'Acura TL Type-S 2008', ..., 'Volvo 240 Sedan 1993',
#   'Volvo XC90 SUV 2007', 'smart fortwo Convertible 2012'])

train_data[0]
# (<PIL.Image.Image image mode=RGB size=600x400>, 13)

train_data[1]
# (<PIL.Image.Image image mode=RGB size=900x675>, 2)

train_data[2]
# (<PIL.Image.Image image mode=RGB size=640x480>, 90)

train_data[3]
# (<PIL.Image.Image image mode=RGB size=2100x1386>, 133)

train_data[4]
# (<PIL.Image.Image image mode=RGB size=144x108>, 105)

import matplotlib.pyplot as plt

def show_images(data, main_title=None):
    plt.figure(figsize=(12, 5))
    plt.suptitle(t=main_title, y=1.0, fontsize=14)
    for i, (im, lab) in zip(range(1, 11), data):
        plt.subplot(2, 5, i)
        plt.imshow(X=im)
        plt.title(label=lab)
    plt.tight_layout()
    plt.show()

show_images(data=train_data, main_title="train_data")
show_images(data=test_data, main_title="test_data")

show_images(data=train_data, ims=train_ims, main_title="train_data")
show_images(data=train_data, ims=val_ims, main_title="val_data")
show_images(data=test_data, ims=test_ims, main_title="test_data")

PyTorch 中的斯坦福汽车

PyTorch 中的斯坦福汽车

以上就是《PyTorch 中的斯坦福汽车》的详细内容,更多关于的资料请关注golang学习网公众号!

声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>