PyTorch 中的 ImageNet
来源:dev.to
时间:2024-12-25 21:06:35 171浏览 收藏
有志者,事竟成!如果你在学习文章,那么本文《PyTorch 中的 ImageNet》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
请我喝杯咖啡☕
*我的帖子解释了 imagenet。
imagenet()可以使用imagenet数据集,如下所示:
*备忘录:
- 第一个参数是 root(必需类型:str 或 pathlib.path)。 *绝对或相对路径都是可能的。
- 第二个参数是 split(可选-默认:"train"-类型:str):
*备注:
- 可以设置“train”(1,281,167张图片)或“val”(50,000张图片)。
- 不支持“测试”(100,000 张图像),因此我在 github 上请求了该功能。
- 有转换参数(可选-默认:无-类型:可调用)。必须使用*transform=。
- 有 target_transform 参数(可选-默认:无-类型:可调用)。 - 有转换参数(可选-默认:无-类型:可调用)。必须使用*target_transform=。
- 有 loader 参数(可选-默认:torchvision.datasets.folder.default_loader-类型:可调用)。 *loader=必须使用。
- 您必须手动下载数据集(ilsvrc2012_devkit_t12.tar.gz、ilsvrc2012_img_train.tar 和 ilsvrc2012_img_val.tar 到 data/,然后运行 imagenet() 提取并加载数据集。
- 关于训练图像索引和验证图像索引的类别标签,tench&tincatinca(0) 分别为 0~1299 和 0~49,goldfish &鲫鱼(1) 是1300~2599 和 50~99, 大白鲨&白鲨&食人鲨&食人鲨&carcharodon carcharias(2) 2600~3899和 100~149,虎鲨&galeocerdo cuvieri(3) 是 3900~5199 和 150~199,锤头鲨&锤头鲨 (4) 为 5200~6499 且200~249,电鳐&蟹钳鱼&麻木鱼&鱼雷(5)分别为6500~7799和250~299,黄貂鱼(6) 是7800~9099和250~299,公鸡(7)是9100~10399和300~349,母鸡(8)是10400~11699和350~399, 鸵鸟&鸵鸟(9)分别是11700~12999和400~449等。
from torchvision.datasets import ImageNet
from torchvision.datasets.folder import default_loader
train_data = ImageNet(
root="data"
)
train_data = ImageNet(
root="data",
split="train",
transform=None,
target_transform=None,
loader=default_loader
)
val_data = ImageNet(
root="data",
split="val"
)
len(train_data), len(val_data)
# (1281167, 50000)
train_data
# Dataset ImageNet
# Number of datapoints: 1281167
# Root location: D:/data
# Split: train
train_data.root
# 'data'
train_data.split
# 'train'
print(train_data.transform)
# None
print(train_data.target_transform)
# None
train_data.loader
# <function torchvision.datasets.folder.default_loader(path: str) -> Any>
len(train_data.classes), train_data.classes
# (1000,
# [('tench', 'Tinca tinca'), ('goldfish', 'Carassius auratus'),
# ('great white shark', 'white shark', 'man-eater', 'man-eating shark',
# 'Carcharodon carcharias'), ('tiger shark', 'Galeocerdo cuvieri'),
# ('hammerhead', 'hammerhead shark'), ('electric ray', 'crampfish',
# 'numbfish', 'torpedo'), ('stingray',), ('cock',), ('hen',),
# ('ostrich', 'Struthio camelus'), ..., ('bolete',), ('ear', 'spike',
# 'capitulum'), ('toilet tissue', 'toilet paper', 'bathroom tissue')])
train_data[0]
# (<PIL.Image.Image image mode=RGB size=250x250>, 0)
train_data[1]
# (<PIL.Image.Image image mode=RGB size=200x150>, 0)
train_data[2]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
train_data[1300]
# (<PIL.Image.Image image mode=RGB size=640x480>, 1)
train_data[2600]
# (<PIL.Image.Image image mode=RGB size=500x375>, 2)
val_data[0]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
val_data[1]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
val_data[2]
# (<PIL.Image.Image image mode=RGB size=500x375>, 0)
val_data[50]
# (<PIL.Image.Image image mode=RGB size=500x500>, 1)
val_data[100]
# (<PIL.Image.Image image mode=RGB size=679x444>, 2)
import matplotlib.pyplot as plt
def show_images(data, ims, main_title=None):
plt.figure(figsize=[12, 6])
plt.suptitle(t=main_title, y=1.0, fontsize=14)
for i, j in enumerate(iterable=ims, start=1):
plt.subplot(2, 5, i)
im, lab = data[j]
plt.imshow(X=im)
plt.title(label=lab)
plt.tight_layout(h_pad=3.0)
plt.show()
train_ims = [0, 1, 2, 1300, 2600, 3900, 5200, 6500, 7800, 9100]
val_ims = [0, 1, 2, 50, 100, 150, 200, 250, 300, 350]
show_images(data=train_data, ims=train_ims, main_title="train_data")
show_images(data=val_data, ims=val_ims, main_title="val_data")


今天关于《PyTorch 中的 ImageNet》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于的内容请关注golang学习网公众号!
声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
165 收藏
-
449 收藏
-
216 收藏
-
325 收藏
-
300 收藏
-
337 收藏
-
385 收藏
-
165 收藏
-
254 收藏
-
427 收藏
-
149 收藏
-
190 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习