PyTorch 中的 atleast_
来源:dev.to
时间:2024-12-31 17:48:39 311浏览 收藏
一分耕耘,一分收获!既然打开了这篇文章《PyTorch 中的 atleast_》,就坚持看下去吧!文中内容包含等等知识点...希望你能在阅读本文后,能真真实实学到知识或者帮你解决心中的疑惑,也欢迎大佬或者新人朋友们多留言评论,多给建议!谢谢!
请我喝杯咖啡☕
*备忘录:
- 我的帖子解释了 atleast_2d()。
- 我的帖子解释了 atleast_3d()。
atleast_1d()只需将一个或多个0d或多个d张量从一个或多个0d或多个d张量更改为一个或多个1d张量即可获得零个或多个元素的一个或多个1d或多个d张量的视图零个或多个元素,如下所示:
*备忘录:
- atleast_1d() 可以与 torch 一起使用,但不能与张量一起使用。
- torch 的第一个或多个参数是*张量(必需类型:int、float、complex 或 bool 的张量或元组或 int、float、complex 或 bool 的张量列表):
*备注:
- 如果设置多个张量,则返回一个张量元组,否则返回一个张量。
- 不要使用任何关键字,例如 *tensors=、tensor 或 input。
- 不设置参数会返回一个空元组。
import torch tensor0 = torch.tensor(2) # 0D tensor torch.atleast_1d(tensor0) # tensor([2]) tensor0 = torch.tensor(2) # 0D tensor tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor tensor3 = torch.tensor([[[2, 7, 4], [8, 3, 2]], # 3D tensor [[5, 0, 8], [3, 6, 1]]]) tensor4 = torch.tensor([[[[2, 7, 4], [8, 3, 2]], # 4D tensor [[5, 0, 8], [3, 6, 1]]], [[[9, 4, 7], [1, 0, 5]], [[6, 7, 4], [2, 1, 9]]]]) torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4) torch.atleast_1d((tensor0, tensor1, tensor2, tensor3, tensor4)) # (tensor([2]), # tensor([2, 7, 4]), # tensor([[2, 7, 4], [8, 3, 2]]), # tensor([[[2, 7, 4], [8, 3, 2]], # [[5, 0, 8], [3, 6, 1]]]), # tensor([[[[2, 7, 4], [8, 3, 2]], # [[5, 0, 8], [3, 6, 1]]], # [[[9, 4, 7], [1, 0, 5]], # [[6, 7, 4], [2, 1, 9]]]])) tensor0 = torch.tensor(2) # 0D tensor tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([[2., 7., 4.], # 2D tensor [8., 3., 2.]]) tensor3 = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # 3D tensor [8.+0.j, 3.+0.j, 2.+0.j]], [[5.+0.j, 0.+0.j, 8.+0.j], [3.+0.j, 6.+0.j, 1.+0.j]]]) tensor4 = torch.tensor([[[[True, False, True], [False, True, False]], [[True, False, True], [False, True, False]]], [[[True, False, True], [False, True, False]], [[True, False, True], [False, True, False]]]]) # 4D tensor torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4) # (tensor([2]), # tensor([2, 7, 4]), # tensor([[2., 7., 4.], # [8., 3., 2.]]), # tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # [8.+0.j, 3.+0.j, 2.+0.j]], # [[5.+0.j, 0.+0.j, 8.+0.j], # [3.+0.j, 6.+0.j, 1.+0.j]]]), # tensor([[[[True, False, True], [False, True, False]], # [[True, False, True], [False, True, False]]], # [[[True, False, True], [False, True, False]], # [[True, False, True], [False, True, False]]]])) torch.atleast_1d() # ()
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
349 收藏
-
117 收藏
-
488 收藏
-
398 收藏
-
450 收藏
-
385 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习