Linux 自带的耳机拔插检测驱动
来源:良许Linux教程网
时间:2025-01-17 12:15:53 325浏览 收藏
今天golang学习网给大家带来了《Linux 自带的耳机拔插检测驱动》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~
Linux系统默认的耳机插拔检测驱动程序被整合在声卡驱动中,这使得耳机插拔状态能够通过输入子系统进行报告。
这一功能的具体实现位于kernel-5.15版本的sound/soc/generic/simple-card-utils.c文件中。
571 int asoc_simple_init_jack(struct snd_soc_card *card, 572 struct asoc_simple_jack *sjack, 573 int is_hp, char *prefix, 574 char *pin) 575 { 576 struct device *dev = card->dev; 577 enum of_gpio_flags flags; 578 char prop[128]; 579 char *pin_name; 580 char *gpio_name; 581 int mask; 582 int det; 583 584 if (!prefix) 585 prefix = ""; 586 587 sjack->gpio.gpio = -ENOENT; 588 589 if (is_hp) { 590 snprintf(prop, sizeof(prop), "%shp-det-gpio", prefix); 591 pin_name = pin ? pin : "Headphones"; 592 gpio_name = "Headphone detection"; 593 mask = SND_JACK_HEADPHONE; 594 } else { 595 snprintf(prop, sizeof(prop), "%smic-det-gpio", prefix); 596 pin_name = pin ? pin : "Mic Jack"; 597 gpio_name = "Mic detection"; 598 mask = SND_JACK_MICROPHONE; 599 } 600 601 det = of_get_named_gpio_flags(dev->of_node, prop, 0, &flags); 602 if (det == -EPROBE_DEFER) 603 return -EPROBE_DEFER; 604 605 if (gpio_is_valid(det)) { 606 sjack->pin.pin = pin_name; 607 sjack->pin.mask = mask; 608 609 sjack->gpio.name = gpio_name; 610 sjack->gpio.report = mask; 611 sjack->gpio.gpio = det; 612 sjack->gpio.invert = !!(flags & OF_GPIO_ACTIVE_LOW); 613 sjack->gpio.debounce_time = 150; 614 615 snd_soc_card_jack_new(card, pin_name, mask, 616 &sjack->jack, 617 &sjack->pin, 1); 618 619 snd_soc_jack_add_gpios(&sjack->jack, 1, 620 &sjack->gpio); 621 } 622 623 return 0; 624 } 625 EXPORT_SYMBOL_GPL(asoc_simple_init_jack);
第 589~593 行,【构建】用于查找设备树中 GPIO 属性的属性名称 prop。设置 pin_name 为”Headphones”,表示插孔的名称。设置 gpio_name 为 “Headphone detection”,表示 GPIO 的名称。设置 mask 为 SND_JACK_HEADPHONE,表示这是一个耳机插孔。
第 601 行,使用设备树函数 of_get_named_gpio_flags 获取与属性名称 prop 关联的 GPIO 描述符,并存储在 det 中。如果 GPIO 未定义,det 将为负数。
第 606~613 行,如果设置了检测 GPIO,那么设置结构体指针 sjack 的一些属性。设置插孔的引脚信息,比如 sjack->pin.pin 引脚名字。设置耳机插孔的一些 GPIO 关联信息,如 sjack->gpio.gpio 是表示 GPIO 描述符,sjack->gpio.invert 表示根据设备树中的属性决定是否反转 GPIO 状态,GPIO_ACTIVE_LOW 是低电平表示活动,当耳机插入时,检测脚将被拉低,说明是低有效。debounce_time 这个是设置消抖时间,防止误检测。
第 615 行,这里将耳机插孔与声卡绑定。
第 619 行,绑定 GPIO,就会触发耳机插拨事件。
函数名重定义:/include/sound/simple_card_utils.h
14 #define asoc_simple_init_hp(card, sjack, prefix) \ 15 asoc_simple_init_jack(card, sjack, 1, prefix, NULL) 16 #define asoc_simple_init_mic(card, sjack, prefix) \ 17 asoc_simple_init_jack(card, sjack, 0, prefix, NULL)
在声卡驱动 probe 时调用
dts 中配置声卡节点 compatible = “simple-audio-card”
734 static const struct of_device_id simple_of_match[] = { 735 { .compatible = "simple-audio-card", }, 736 { .compatible = "simple-scu-audio-card", 737 .data = (void *)DPCM_SELECTABLE }, 738 {}, 739 }; 740 MODULE_DEVICE_TABLE(of, simple_of_match); 614 static int simple_soc_probe(struct snd_soc_card *card) 615 { 616 struct asoc_simple_priv *priv = snd_soc_card_get_drvdata(card); 617 int ret; 618 619 ret = asoc_simple_init_hp(card, &priv->hp_jack, PREFIX); 620 if (ret return ret; 622 623 ret = asoc_simple_init_mic(card, &priv->mic_jack, PREFIX); 624 if (ret return ret; 626 627 return 0; 628 }
这个驱动文件负责声卡的初始化,音频流管理,控制接口等。在第 619 行,调用了耳机检测 IO 初始化的代码。
耳机拔插上报 flow
asoc_simple_init_jack 会调用 snd_soc_card_jack_new,添加检测管脚 pins,进而一路调用下来
60 int snd_soc_card_jack_new(struct snd_soc_card *card, const char *id, int type, 61 struct snd_soc_jack *jack, 62 struct snd_soc_jack_pin *pins, unsigned int num_pins) 63 { 64 int ret; 65 66 mutex_init(&jack->mutex); 67 jack->card = card; 68 INIT_LIST_HEAD(&jack->pins); 69 INIT_LIST_HEAD(&jack->jack_zones); 70 BLOCKING_INIT_NOTIFIER_HEAD(&jack->notifier); 71 72 ret = snd_jack_new(card->snd_card, id, type, &jack->jack, false, false); 73 if (ret) 74 goto end; 75 76 if (num_pins) 77 ret = snd_soc_jack_add_pins(jack, num_pins, pins); 78 end: 79 return soc_card_ret(card, ret); 80 } 81 EXPORT_SYMBOL_GPL(snd_soc_card_jack_new); 137 int snd_soc_jack_add_pins(struct snd_soc_jack *jack, int count, 138 struct snd_soc_jack_pin *pins) 139 { 140 int i; 141 142 for (i = 0; i if (!pins[i].pin) { 144 dev_err(jack->card->dev, "ASoC: No name for pin %d\n", 145 i); 146 return -EINVAL; 147 } 148 if (!pins[i].mask) { 149 dev_err(jack->card->dev, "ASoC: No mask for pin %d" 150 " (%s)\n", i, pins[i].pin); 151 return -EINVAL; 152 } 153 154 INIT_LIST_HEAD(&pins[i].list); 155 list_add(&(pins[i].list), &jack->pins); 156 snd_jack_add_new_kctl(jack->jack, pins[i].pin, pins[i].mask); 157 } 158 159 /* Update to reflect the last reported status; canned jack 160 * implementations are likely to set their state before the 161 * card has an opportunity to associate pins. 162 */ 163 snd_soc_jack_report(jack, 0, 0); 164 165 return 0; 166 } 167 EXPORT_SYMBOL_GPL(snd_soc_jack_add_pins); 34 void snd_soc_jack_report(struct snd_soc_jack *jack, int status, int mask) 35 { 36 struct snd_soc_dapm_context *dapm; 37 struct snd_soc_jack_pin *pin; 38 unsigned int sync = 0; 39 40 if (!jack) 41 return; 42 trace_snd_soc_jack_report(jack, mask, status); 43 44 dapm = &jack->card->dapm; 45 46 mutex_lock(&jack->mutex); 47 48 jack->status &= ~mask; 49 jack->status |= status & mask; 50 51 trace_snd_soc_jack_notify(jack, status); 52 53 list_for_each_entry(pin, &jack->pins, list) { 54 int enable = pin->mask & jack->status; 55 56 if (pin->invert) 57 enable = !enable; 58 59 if (enable) 60 snd_soc_dapm_enable_pin(dapm, pin->pin); 61 else 62 snd_soc_dapm_disable_pin(dapm, pin->pin); 63 64 /* we need to sync for this case only */ 65 sync = 1; 66 } 67 68 /* Report before the DAPM sync to help users updating micbias status */ 69 blocking_notifier_call_chain(&jack->notifier, jack->status, jack); 70 71 if (sync) 72 snd_soc_dapm_sync(dapm); 73 74 snd_jack_report(jack->jack, jack->status); 75 76 mutex_unlock(&jack->mutex); 77 } 78 EXPORT_SYMBOL_GPL(snd_soc_jack_report); 652 void snd_jack_report(struct snd_jack *jack, int status) 653 { 654 struct snd_jack_kctl *jack_kctl; 655 unsigned int mask_bits = 0; 656 #ifdef CONFIG_SND_JACK_INPUT_DEV 657 int i; 658 #endif 659 660 if (!jack) 661 return; 662 663 jack->hw_status_cache = status; 664 665 list_for_each_entry(jack_kctl, &jack->kctl_list, list) 666 if (jack_kctl->sw_inject_enable) 667 mask_bits |= jack_kctl->mask_bits; 668 else 669 snd_kctl_jack_report(jack->card, jack_kctl->kctl, 670 status & jack_kctl->mask_bits); 671 672 #ifdef CONFIG_SND_JACK_INPUT_DEV 673 mutex_lock(&jack->input_dev_lock); 674 if (!jack->input_dev) { 675 mutex_unlock(&jack->input_dev_lock); 676 return; 677 } 678 679 for (i = 0; i key); i++) { 680 int testbit = ((SND_JACK_BTN_0 >> i) & ~mask_bits); 681 682 if (jack->type & testbit) 683 input_report_key(jack->input_dev, jack->key[i], 684 status & testbit); 685 } 686 687 for (i = 0; i if (jack->type & testbit) 691 input_report_switch(jack->input_dev, 692 jack_switch_types[i], 693 status & testbit); 694 } 695 696 input_sync(jack->input_dev); 697 mutex_unlock(&jack->input_dev_lock); 698 #endif /* CONFIG_SND_JACK_INPUT_DEV */ 699 } 700 EXPORT_SYMBOL(snd_jack_report);
第 683 行,input 上报事件,参数 1 为耳机事件类型,参数 2 为耳机事件键值,参数 3 表示耳机插拨的状态。第 696 行,同步事件。
若你要使用 Linux 自带的耳机拔插检测驱动,则需要在对应的声卡驱动的 dts 节点中声明你所使用的 GPIO 口,加载时就会自动帮你配置好检测逻辑。
Linux 自带的耳机拔插检测功能有限,大部分平台都有自己的耳机检测逻辑,例如 RK 平台的耳机检测在这:
kernel/drivers/headset_observe/rockchip_headset_core.c
MTK 平台的耳机拔插检测驱动在:
kernel/drivers/misc/mediatek/accdet/
kernel/sound/soc/codecs/mt6xxx-accdet.c
到这里,我们也就讲完了《Linux 自带的耳机拔插检测驱动》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于Linux,Linux系统,Shell脚本,Linux命令,linux入门,linux教程,linux学习,嵌入式Linux的知识点!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
500 收藏
-
320 收藏
-
490 收藏
-
302 收藏
-
381 收藏
-
216 收藏
-
402 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习