pytorch中的随机溶剂(1)
时间:2025-02-10 16:19:31 277浏览 收藏
IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《pytorch中的随机溶剂(1)》,聊聊,我们一起来看看吧!
This text discusses the RandomResizedCrop
function from the torchvision.transforms.v2
library in Python, demonstrating its use with the Oxford IIIT Pet dataset. The code shows how to apply the transformation with various size parameters, including single integers and lists/tuples specifying height and width. The results are visualized using Matplotlib.
The key points highlighted are:
RandomResizedCrop
Functionality: This function randomly crops a portion of an image and resizes it to the specified dimensions.- Parameter Usage: The code illustrates how to use the
size
,scale
,ratio
,interpolation
, andantialias
parameters. It demonstrates flexibility in inputting thesize
parameter (single integer, list, or tuple). - Oxford IIIT Pet Dataset: The dataset is used to showcase the transformation's effect on real-world images.
- Visualization: Matplotlib is used to display the original images and the transformed images for comparison, clearly showing the cropping and resizing effects at different scales.
- Version Comparison (Implicit): While not explicitly stated, the code implicitly compares the functionality of
torchvision.transforms.v2
(used in the example) with the previous version (torchvision.transforms.functional
), as thev2
version is explicitly used.
The included images show the original images and the results of applying RandomResizedCrop
with different size parameters. The images visually demonstrate the impact of changing the target size on the resulting cropped and resized images. The repetition of some images in the provided text is likely unintentional.
The question regarding v1
vs. v2
is answered implicitly: the code uses v2
, implying it's the recommended version. The code's clarity and comments make it easy to understand the functionality and parameter usage of RandomResizedCrop
.
The images are reproduced below. Note that the image URLs are placeholders, as they are not accessible to me. To display them correctly, replace these placeholders with the actual image URLs.
Please replace /uploads/20250210/...
with the actual image URLs.
理论要掌握,实操不能落!以上关于《pytorch中的随机溶剂(1)》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
339 收藏
-
184 收藏
-
197 收藏
-
343 收藏
-
324 收藏
-
479 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习