登录
首页 >  文章 >  python教程

pytorch中的随机溶剂(5)

来源:dev.to

时间:2025-02-16 22:31:37 242浏览 收藏

有志者,事竟成!如果你在学习文章,那么本文《pytorch中的随机溶剂(5)》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~

给我买咖啡☕

*备忘录:

  • 我的帖子说明了关于大小参数的randomresizedcrop()。
  • 我的帖子解释了有关比例参数的randomresizedcrop()。
  • 我的帖子解释了关于比率参数的randomresizedcrop()。
  • >
  • 我的帖子解释了随机rastizedcrop()关于尺寸参数,比例= [0,0]和比率= [1,1]。
  • 我的帖子解释了与比例参数有关的随机rastresizedcrop(),scale = [0,0]。
  • 我的帖子解释了牛津iiitpet()。
  • randomresizedcrop()可以裁剪图像的随机部分,然后将其调整为给定尺寸,如下所示:
  • from torchvision.datasets import OxfordIIITPet
    from torchvision.transforms.v2 import RandomResizedCrop
    from torchvision.transforms.functional import InterpolationMode
    
    origin_data = OxfordIIITPet(
        root="data",
        transform=None
    )
    
    s1000sc0_0r1_1origin_data = OxfordIIITPet( # `s` is size and `sc` is scale.
        root="data",                           # `r` is ratio.
        transform=RandomResizedCrop(size=1000, scale=[0, 0], ratio=[1, 1])
    )
    
    s1000sc0_1r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0, 1], ratio=[1, 1])
    )
    
    s1000sc0_05r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0, 0.5], ratio=[1, 1])
    )
    
    s1000sc05_1r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.5, 1], ratio=[1, 1])
    )
    
    s1000sc0001_0001r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.001, 0.001],
                                    ratio=[1, 1])
    )
    
    s1000sc001_001r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.01, 0.01], ratio=[1, 1])
    )
    
    s1000sc01_01r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.1, 0.1], ratio=[1, 1])
    )
    
    s1000sc02_02r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.2, 0.2], ratio=[1, 1])
    )
    
    s1000sc03_03r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.3, 0.3], ratio=[1, 1])
    )
    
    s1000sc04_04r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.4, 0.4], ratio=[1, 1])
    )
    
    s1000sc05_05r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.5, 0.5], ratio=[1, 1])
    )
    
    s1000sc06_06r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.6, 0.6], ratio=[1, 1])
    )
    
    s1000sc07_07r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.7, 0.7], ratio=[1, 1])
    )
    
    s1000sc08_08r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.8, 0.8], ratio=[1, 1])
    )
    
    s1000sc09_09r1_1_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[0.9, 0.9], ratio=[1, 1])
    )
    
    s1000sc1_1r1_1origin_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[1, 1], ratio=[1, 1])
    )
    
    s1000sc10_10r1_1origin_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[10, 10], ratio=[1, 1])
    )
    
    s1000sc100_100r1_1origin_data = OxfordIIITPet(
        root="data",
        transform=RandomResizedCrop(size=1000, scale=[100, 100], ratio=[1, 1])
    )
    
    import matplotlib.pyplot as plt
    
    def show_images1(data, main_title=None):
        plt.figure(figsize=[10, 5])
        plt.suptitle(t=main_title, y=0.8, fontsize=14)
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            plt.imshow(X=im)
        plt.tight_layout()
        plt.show()
    
    show_images1(data=origin_data, main_title="origin_data")
    print()
    show_images1(data=s1000sc0_0r1_1origin_data,
                 main_title="s1000sc0_0r1_1origin_data")
    show_images1(data=s1000sc0_1r1_1_data, main_title="s1000sc0_1r1_1_data")
    show_images1(data=s1000sc0_05r1_1_data, main_title="s1000sc0_05r1_1_data")
    show_images1(data=s1000sc05_1r1_1_data, main_title="s1000sc05_1r1_1_data")
    print()
    show_images1(data=s1000sc0_0r1_1origin_data,
                 main_title="s1000sc0_0r1_1origin_data")
    show_images1(data=s1000sc0001_0001r1_1_data, 
                 main_title="s1000sc0001_0001r1_1_data")
    show_images1(data=s1000sc001_001r1_1_data, 
                 main_title="s1000sc001_001r1_1_data")
    show_images1(data=s1000sc01_01r1_1_data, main_title="s1000sc01_01r1_1_data")
    show_images1(data=s1000sc02_02r1_1_data, main_title="s1000sc02_02r1_1_data")
    show_images1(data=s1000sc03_03r1_1_data, main_title="s1000sc03_03r1_1_data")
    show_images1(data=s1000sc04_04r1_1_data, main_title="s1000sc04_04r1_1_data")
    show_images1(data=s1000sc05_05r1_1_data, main_title="s1000sc05_05r1_1_data")
    show_images1(data=s1000sc06_06r1_1_data, main_title="s1000sc06_06r1_1_data")
    show_images1(data=s1000sc07_07r1_1_data, main_title="s1000sc07_07r1_1_data")
    show_images1(data=s1000sc08_08r1_1_data, main_title="s1000sc08_08r1_1_data")
    show_images1(data=s1000sc09_09r1_1_data, main_title="s1000sc09_09r1_1_data")
    show_images1(data=s1000sc1_1r1_1origin_data, 
                 main_title="s1000sc1_1r1_1origin_data")
    show_images1(data=s1000sc10_10r1_1origin_data,
                 main_title="s1000sc10_10r1_1origin_data")
    show_images1(data=s1000sc100_100r1_1origin_data,
                 main_title="s1000sc100_100r1_1origin_data")
    
    # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ 
    def show_images2(data, main_title=None, s=None, sc=(0.08, 1.0),
                     r=(0.75, 1.3333333333333333),
                     ip=InterpolationMode.BILINEAR, a=True):
        plt.figure(figsize=[10, 5])
        plt.suptitle(t=main_title, y=0.8, fontsize=14)
        for i, (im, _) in zip(range(1, 6), data):
            plt.subplot(1, 5, i)
            if s:
                rrc = RandomResizedCrop(size=s, scale=sc, # Here
                                        ratio=r, interpolation=ip,
                                        antialias=a)
                plt.imshow(X=rrc(im)) # Here
            else:
                plt.imshow(X=im)
        plt.tight_layout()
        plt.show()
    
    show_images2(data=origin_data, main_title="origin_data")
    print()
    show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data",
                 s=1000, sc=[0, 0], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc0_1r1_1_data", s=1000, 
                 sc=[0, 1], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc0_05r1_1_data", s=1000,
                 sc=[0, 0.5], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc05_1r1_1_data", s=1000,
                 sc=[0.5, 1], r=[1, 1])
    print()
    show_images2(data=origin_data, main_title="s1000sc0_0r1_1origin_data", 
                 s=1000, sc=[0, 0], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc0001_0001r1_1_data", 
                 s=1000, sc=[0.001, 0.001], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc001_001r1_1_data", 
                 s=1000, sc=[0.01, 0.01], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc01_01r1_1_data", 
                 s=1000, sc=[0.1, 0.1], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc02_02r1_1_data", 
                 s=1000, sc=[0.2, 0.2], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc03_03r1_1_data", 
                 s=1000, sc=[0.3, 0.3], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc04_04r1_1_data", 
                 s=1000, sc=[0.4, 0.4], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc05_05r1_1_data", 
                 s=1000, sc=[0.5, 0.5], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc06_06r1_1_data", 
                 s=1000, sc=[0.6, 0.6], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc07_07r1_1_data", 
                 s=1000, sc=[0.7, 0.7], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc08_08r1_1_data", 
                 s=1000, sc=[0.8, 0.8], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc09_09r1_1_data", 
                 s=1000, sc=[0.9, 0.9], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc1_1r1_1origin_data", 
                 s=1000, sc=[1, 1], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc10_10r1_1origin_data",
                 s=1000, sc=[10, 10], r=[1, 1])
    show_images2(data=origin_data, main_title="s1000sc100_100r1_1origin_data",
                 s=1000, sc=[100, 100], r=[1, 1])
    


image description


image description

image description

image description

image description


image description

image description

image description

image description

image description

image description

image description

image description

image description

image description

image description

image description

image description

image description

终于介绍完啦!小伙伴们,这篇关于《pytorch中的随机溶剂(5)》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

声明:本文转载于:dev.to 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>