登录
首页 >  文章 >  python教程

Rustynum随访:新鲜见解和正在进行的发展

时间:2025-02-17 16:03:18 467浏览 收藏

IT行业相对于一般传统行业,发展更新速度更快,一旦停止了学习,很快就会被行业所淘汰。所以我们需要踏踏实实的不断学习,精进自己的技术,尤其是初学者。今天golang学习网给大家整理了《Rustynum随访:新鲜见解和正在进行的发展》,聊聊,我们一起来看看吧!

Rustynum随访:新鲜见解和正在进行的发展

大家好!

继上次介绍Rustynum之后,我将分享最近几周的开发进展。Rustynum是一个轻量级的NumPy替代品,使用Rust编写,并采用MIT许可证开源发布在GitHub上。它利用Rust的SIMD特性,实现更快的数值计算,同时保持体积小巧(Python wheel约300KB)。本文将重点介绍开发过程中的心得体会,以及新增的文档和教程。

简要回顾

如果您错过了之前的公告,Rustynum的主要特性包括:

  • 利用Rust的SIMD指令集
  • 高性能
  • Rust的内存安全特性,无需GC开销
  • 小巧的发布包大小(远小于NumPy wheel)
  • 类似NumPy的接口,方便Python用户迁移

更多信息请访问Rustynum官网或查看我之前在dev.to发表的文章。

开发人员视角:最新进展

  1. 矩阵操作改进

我投入大量精力确保矩阵操作的便捷性。能够以最小的代码改动,实现NumPy的矩阵向量乘法或矩阵矩阵乘法等操作,是一个主要目标。.dot()函数和@运算符都支持这些操作。

  • 查看相关教程: Rustynum中的高级矩阵操作

以下是一个快速示例:

import numpy as np
import rustynum as rnp
from sklearn.linear_model import LogisticRegression

# 1) 使用NumPy创建合成数据
train_np = np.random.rand(1000, 10).astype(np.float32)
labels_np = np.random.randint(0, 2, size=1000)

# 2) 转换为Rustynum进行快速缩放
train_rn = rnp.NumArray(train_np.flatten().tolist(), dtype="float32").reshape([1000, 10])

# 基本缩放 (计算每列的最小值和最大值)
scaled_rn = []
for col_idx in range(train_rn.shape[1]):
    col_data = train_rn[:, col_idx]
    mn = col_data.min()
    mx = col_data.max()
    rng = mx - mn if (mx != mn) else 1.0
    scaled_col = (col_data - mn) / rng
    scaled_rn.append(scaled_col.tolist())

train_scaled_rn = rnp.concatenate(
    [rnp.NumArray(col, dtype="float32").reshape([1000, 1]) for col in scaled_rn],
    axis=1
)

# 3) 转换回NumPy用于scikit-learn
train_scaled_np = np.array(train_scaled_rn.tolist(), dtype=np.float32)

# 4) 训练逻辑回归模型
model = LogisticRegression()
model.fit(train_scaled_np, labels_np)

print("模型系数:", model.coef_)

这个脚本展示了Rustynum如何以Pythonic的方式处理数据转换,然后您可以将数组传递给其他库。

总结

扩展Rustynum的功能,并探索Rust与Python集成如何实现高性能计算,是一个非常有趣的过程。最近的教程展示了Rustynum如何在数据科学或机器学习任务中部分替代NumPy,尤其是在处理较小或中等大小数组的任务中。

  • 访问Rustynum.com查看教程
  • 在GitHub上贡献代码或报告问题
  • 分享您的反馈

感谢您的关注,期待听到Rustynum如何帮助到您的项目!

祝您编程愉快!

Igor

今天关于《Rustynum随访:新鲜见解和正在进行的发展》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>