登录
首页 >  文章 >  python教程

PyTorchResNet50导出ONNX动态batch_size解决方案

时间:2025-03-20 15:25:48 330浏览 收藏

本文讲解如何解决PyTorch ResNet50模型导出ONNX时遇到的动态batch_size难题。由于原始代码中`gem`类和`imageretrievalnet`类包含ONNX导出不兼容的动态元素(例如`gem`类的可学习参数和`imageretrievalnet`类的未使用属性),导致shape推断失败。文章通过修改这两个类,将动态参数改为常量,并去除冗余属性,最终利用`torch.onnx.export`函数及`dynamic_axes`参数成功导出支持动态batch_size的ONNX模型,并详细提供了代码示例。

解决PyTorch ResNet50模型导出ONNX时动态batch_size难题

本文介绍如何将基于ResNet50的PyTorch模型导出为ONNX格式,重点解决动态batch_size导致的导出问题。原始代码中,imageretrievalnet类和gem类存在一些与ONNX导出不兼容的因素,主要包括gem类中可学习参数self.p以及imageretrievalnet类中未使用的self.lwhiten属性。这些动态元素阻碍了ONNX的shape推断,导致导出失败。

PyTorch ResNet50模型导出ONNX时如何解决动态batch_size难题?

为了解决这个问题,我们需要修改这两个类以适应ONNX导出流程。具体修改如下:

首先,修改gem类,将self.p参数改为直接赋值的常量,不再作为可学习参数:

class gem(nn.Module):
    def __init__(self, p=3, eps=1e-6):
        super(gem, self).__init__()
        self.p = p  # 直接赋值常量值
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return gem_op(x, p=self.p, eps=self.eps) # 使用自定义的gem_op函数,避免直接使用类名调用

然后,简化imageretrievalnet类,去除未使用的self.lwhiten属性:

class imageretrievalnet(nn.Module):
    def __init__(self, dim: int = 512):
        super(imageretrievalnet, self).__init__()
        resnet50_model = models.resnet50()
        features = list(resnet50_model.children())[:-2]
        self.features = nn.Sequential(*features)
        self.pool = gem()
        self.whiten = nn.Linear(2048, dim, bias=True) # 使用nn.Linear
        self.norm = l2n()

    def forward(self, x: torch.Tensor):
        o: torch.Tensor = self.features(x)
        pooled_t = self.pool(o)
        normed_t: torch.Tensor = self.norm(pooled_t)
        o: torch.Tensor = normed_t.squeeze(-1).squeeze(-1)

        if self.whiten is not None:
            whitened_t = self.whiten(o)
            normed_t: torch.Tensor = self.norm(whitened_t)
            o = normed_t

        return o.permute(1, 0)

通过以上修改,消除了动态参数带来的不确定性,使ONNX导出能够顺利进行。 使用修改后的imageretrievalnet类,并利用torch.onnx.export函数,指定dynamic_axes参数处理动态batch_size,即可成功导出ONNX模型:

model = imageretrievalnet()
batch_size = 4
input_shape = (batch_size, 3, 224, 224)
input_data = torch.randn(input_shape)
torch.onnx.export(
    model,
    input_data,
    "resnet50.onnx",
    input_names=["input"], output_names=["output"],
    opset_version=12,
    dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}}
)

记住根据实际情况调整opset_version参数。 通过这些修改,即可成功导出支持动态batch_size的ResNet50 ONNX模型。 请注意,代码中添加了gem_op函数的假设,该函数应该实现gem类的功能,以避免在ONNX导出过程中直接使用类名调用。

好了,本文到此结束,带大家了解了《PyTorchResNet50导出ONNX动态batch_size解决方案》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>