PyTorch模型导出ONNX及Runtime推理攻略
时间:2025-03-28 09:00:40 257浏览 收藏
本文详解PyTorch模型导出ONNX格式及使用ONNX Runtime进行推理的完整流程。 许多开发者需要将PyTorch训练的模型部署到其他环境,ONNX作为开放标准,解决了跨框架互操作性问题。文章通过代码示例演示了如何使用`torch.onnx.export`导出模型,并重点讲解了使用ONNX Runtime进行推理时,需将输入数据转换为NumPy数组以避免运行时错误,确保模型部署的顺利进行,并提供两种ONNX Runtime加载和运行模型的方法,方便开发者快速上手。
pytorch模型导出为onnx并进行推理
本文将详细介绍如何使用torch.onnx.export导出pytorch模型到onnx格式,以及如何使用onnx runtime进行推理。
许多开发者在使用pytorch训练模型后,希望能够将其部署到其他环境中,例如移动端或服务器端。这时,onnx (open neural network exchange) 格式就发挥了重要作用。onnx 是一种开放的标准,允许不同框架之间互操作。torch.onnx.export 函数可以将pytorch模型导出为onnx格式。然而,导出后的onnx模型如何使用呢?
以下代码展示了使用torch.onnx.export导出一个简单的pytorch模型:
import torch class summodule(torch.nn.module): def forward(self, x): return torch.sum(x, dim=1) torch.onnx.export( summodule(), (torch.ones(2, 2),), "onnx.pb", input_names=["x"], output_names=["sum"] )
这段代码导出一个名为onnx.pb的onnx模型文件。 该模型接收一个形状为(2, 2)的张量作为输入,并计算其每一行的和作为输出。
接下来,我们需要使用onnx runtime加载并运行这个模型。 直接使用pytorch的tensor作为onnx runtime的输入是错误的。onnx runtime 期望的是numpy数组。
错误的代码示例:
import onnxruntime import torch resnet_onnx = onnxruntime.inferencesession("onnx.pb") x = torch.ones(2, 2) inputs = {resnet_onnx.get_inputs()[0].name: x} resnet_onnx.run(none, inputs)
这段代码会抛出runtimeerror: input must be a list of dictionaries or a single numpy array for input 'x'的错误。
正确的代码示例:
import onnxruntime import numpy import torch resnet_onnx = onnxruntime.inferencesession("onnx.pb") x = numpy.ones((2, 2), dtype=numpy.float32) inputs = {resnet_onnx.get_inputs()[0].name: x} print(resnet_onnx.run(none, inputs))
通过将输入数据类型从torch.tensor更改为numpy.ndarray,并指定数据类型为numpy.float32,我们解决了这个问题。 numpy.ones((2, 2), dtype=numpy.float32) 创建了一个形状为(2, 2)的numpy数组,其元素都为1.0,且数据类型为32位浮点数。 这与onnx模型的预期输入相匹配。 这使得我们可以成功运行onnx模型并得到结果。
另一种使用onnx runtime加载并运行模型的方法:
import onnxruntime as ort import numpy as np sess = ort.InferenceSession("onnx.pb") input_data = np.ones((2, 2)).astype("float32") output_data = sess.run(None, {"x": input_data})[0] print(output_data)
此方法同样使用了numpy数组作为输入,并成功运行了模型。 需要注意的是,输入数据的形状和数据类型必须与导出onnx模型时指定的输入相匹配。
以上就是《PyTorch模型导出ONNX及Runtime推理攻略》的详细内容,更多关于的资料请关注golang学习网公众号!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
101 收藏
-
373 收藏
-
398 收藏
-
378 收藏
-
484 收藏
-
431 收藏
-
115 收藏
-
310 收藏
-
124 收藏
-
315 收藏
-
263 收藏
-
403 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习