登录
首页 >  Golang >  Go教程

Go语言协程处理数据有哪些问题

来源:脚本之家

时间:2023-02-25 10:37:42 207浏览 收藏

Golang不知道大家是否熟悉?今天我将给大家介绍《Go语言协程处理数据有哪些问题》,这篇文章主要会讲到协程、处理数据等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

一、Goroutine

当然第一个想到可能是采用协程处理循环里面要查询的数据

type Card struct {
	Name    string  `json:"name"`
	Balance float64 `json:"balance"`
}
func main() {
	// 获取卡列表数据
	list := getList()
	var data = make([]Card, 0, len(list))
	for _, val := range list {
		go func(card Card) {
			// 查询业务,将值加入该记录中
			var balance = getBalance()
			data = append(data, Card{
				Name:    card.Name,
				Balance: balance,
			})
		}(val)
	}
	log.Printf("数据:%+v", data)
}
// 获取数据列表
func getList() []Card {
	var list = make([]Card, 0)
	for i := 0; i 

运行上述代码,结果: "数据:[]",这是为什么呢?主要是协程处理业务需要时间,循环提前结束,所以才会出现这样的结果,该怎么让所有结果都处理结束才输出结果呢?

二、sync.WaitGroup

此方法就是等待组进行多个任务的同步,等待组可以保证在并发环境中完成指定数量的任务

func main() {
	list := getList() // 获取卡列表数据
	var data = make([]Card, 0, len(list))
	var wg sync.WaitGroup // 声明一个等待组
	for _, val := range list {
		wg.Add(1) // 每一个任务开始时,将等待组增加1
		go func(card Card) {
			defer wg.Done() // 使用defer, 表示函数完成时将等待组值减1
			// 查询业务,休眠100微妙,将值加入该记录中
			var balance = getBalance()
			data = append(data, Card{
				Name:    card.Name,
				Balance: balance,
			})
		}(val)
	}
	wg.Wait() // 等待所有任务完成
	log.Printf("数据:%+v", data)
}

运行结果会输出所有数据,但细心的我们会发现,这个时候数据的顺序是乱的,这个也符合业务需求,该怎么进一步改良呢?

三、数据排序

上面讲到协程处理之后的额数据是无序的,这里我们知道数据跳数,直接初始化一个len和cap等于len(list)的空间,将之前append到data的数据改成通过下标复制,这样输出的数据就是list的数据顺序。

func main() {
	list := getList() // 获取卡列表数据
	var data = make([]Card, len(list), len(list))
	var wg sync.WaitGroup // 声明一个等待组
	for k, val := range list {
		wg.Add(1) // 每一个任务开始时,将等待组增加1
		go func(k int, card Card) {
			defer wg.Done() // 使用defer, 表示函数完成时将等待组值减1
			// 查询业务,休眠100微妙,将值加入该记录中
			var balance = getBalance()
			data[k] = Card{
				Name:    card.Name,
				Balance: balance,
			}
		}(k, val)
	}
	wg.Wait() // 等待所有任务完成
	log.Printf("数据:%+v", data)
}

运行上述代码,虽然可以获取到想要的数据排序,但下次下载数据较多,开的协程过多,势必导致资源开销过大,带来一系列问题,那怎么优化限制协程个数呢?

四、限制协程数

大家都知道协程过多,自然消耗过多资源,可能导致其他问题;这里我们借助chan限制协程个数

// 限制100个协程
type pool struct {
	queue chan int
	wg    *sync.WaitGroup
}
func main() {
	list := getList() // 获取卡列表数据
	var data = make([]Card, len(list), len(list))
	var gl = &pool{queue: make(chan int, 500), wg: &sync.WaitGroup{}} // 显示协程数最大500个
	for k, val := range list {
		gl.queue 

通过使用chan,可以自己定义可协程最大数;现在看起来没有什么问题,但如果协程获取数据panic,会导致整个程序崩溃。

五、协程Panic处理

针对协程的panic(),我们需要接收,使用recover处理

func main() {
	list := getList() // 获取卡列表数据
	var data = make([]Card, len(list), len(list))
	var gl = &pool{queue: make(chan int, 500), wg: &sync.WaitGroup{}} // 显示协程数最大500个
	for k, val := range list {
		gl.queue 

在协程中使用defer recover();这样协程抛出来的panic被接受,不会导致程序奔溃。

总结

协程在处理数据数据通过使用更多资源提升效率协程过多会暂用其他服务资源,我们使用协程过多时需要考虑限制协程中panic需要处理,不然会导致程序崩溃

今天关于《Go语言协程处理数据有哪些问题》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

声明:本文转载于:脚本之家 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>