登录
首页 >  文章 >  python教程

PythonMatplotlib绘图入门指南

时间:2025-07-08 21:19:45 466浏览 收藏

今天golang学习网给大家带来了《Python数据可视化:Matplotlib绘图入门教程》,其中涉及到的知识点包括等等,无论你是小白还是老手,都适合看一看哦~有好的建议也欢迎大家在评论留言,若是看完有所收获,也希望大家能多多点赞支持呀!一起加油学习~

matplotlib 是 Python 中最常用的数据可视化库,适合绘制从基础到复杂的图表。1. 安装方法为 pip install matplotlib;2. 通常使用 import matplotlib.pyplot as plt 导入库;3. 使用 plt.plot() 绘制折线图并可设置标题、坐标轴标签和线条样式;4. 使用 plt.bar() 或 plt.barh() 绘制柱状图,支持分组展示;5. 图表可通过 plt.show() 显示或 plt.savefig() 保存为文件;6. 常见问题包括中文乱码通过设置字体解决、多个子图使用 plt.subplots() 创建、图例需调用 plt.legend() 显示。掌握这些方法即可满足大部分数据可视化需求。

Python怎样实现数据可视化?matplotlib绘图教程

数据可视化是理解数据的重要手段,Python 中最常用的绘图库就是 matplotlib。它功能强大、灵活,适合从基础图表到复杂图形的绘制。

Python怎样实现数据可视化?matplotlib绘图教程

安装与导入

使用 matplotlib 之前需要先安装。如果你还没装,可以用 pip 来安装:

pip install matplotlib

一般我们用 pyplot 模块来绘图,通常会这样导入:

Python怎样实现数据可视化?matplotlib绘图教程
import matplotlib.pyplot as plt

这个写法是约定俗成的,后续代码也大多按这个方式来写。


绘制折线图(Line Plot)

折线图是最基础也是最常见的图表之一,适用于展示趋势变化。

Python怎样实现数据可视化?matplotlib绘图教程

比如我们想画一个简单的 x 和 y 的关系图:

x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]

plt.plot(x, y)
plt.show()

上面这段代码就会显示一个斜率为 2 的直线图。你还可以加标题和坐标轴标签,让图表更清晰:

  • plt.title("我的折线图")
  • plt.xlabel("X 轴")
  • plt.ylabel("Y 轴")

也可以设置线条颜色、样式、标记点等,例如:

plt.plot(x, y, color='red', linestyle='--', marker='o')

这些参数能让你的图表看起来更专业。


绘制柱状图(Bar Chart)

柱状图常用于比较不同类别的数值大小。假设我们有以下数据:

categories = ['A', 'B', 'C']
values = [10, 15, 7]

可以这样画图:

plt.bar(categories, values)
plt.show()

如果想横向画柱状图,换成 plt.barh() 就行了。

有时候我们会遇到“分组柱状图”,也就是每个类别下有两个或更多数据,这时候就需要调整柱子的位置,用 np.arange() 配合宽度参数就能实现。


图表保存与显示

在 Jupyter Notebook 或交互式环境中,直接调用 plt.show() 就能看到图。但在脚本中运行时,可能更希望把图保存下来。

使用下面这句就可以保存为图片文件:

plt.savefig('my_plot.png')

支持多种格式,比如 png、jpg、pdf 等,只需要改扩展名就行。

需要注意的是,在调用 plt.show() 之前调用 savefig,否则可能会保存一个空白图像,因为 show() 会清空当前图像内容。


常见问题和小技巧

  • 中文显示乱码?
    默认情况下,matplotlib 可能不支持中文。你可以通过设置字体解决:

    plt.rcParams['font.sans-serif'] = ['SimHei']
    plt.rcParams['axes.unicode_minus'] = False
  • 多个图放在一起?
    使用 plt.subplots() 可以创建多个子图,方便对比查看。

  • 图例没显示?
    如果用了 plt.plot() 但没有显示图例,记得加上 label= 参数,并调用 plt.legend()

基本上就这些操作,虽然简单但很容易忽略细节。掌握了这些常用方法,就能用 matplotlib 应对大部分的数据可视化需求了。

终于介绍完啦!小伙伴们,这篇关于《PythonMatplotlib绘图入门指南》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>