Python文本摘要技巧与NLP应用
时间:2025-07-19 13:42:41 441浏览 收藏
各位小伙伴们,大家好呀!看看今天我又给各位带来了什么文章?本文标题是《Python文本摘要方法及NLP实现技巧》,很明显是关于文章的文章哈哈哈,其中内容主要会涉及到等等,如果能帮到你,觉得很不错的话,欢迎各位多多点评和分享!
文本摘要可通过Python实现,主要方法包括:1.使用现成库如Sumy和PyTextRank进行抽取式摘要;2.结合jieba分词与TextRank算法处理中文文本;3.利用HuggingFace Transformers实现生成式摘要。Sumy支持多种算法,适合通用场景,PyTextRank更适合英文但也可用于中文预处理后的内容。中文需先分词再构建共现图并计算句子重要性,或使用Gensim的summarize方法。深度学习方法推荐Transformers库中的BART、T5等模型,可理解原文并生成摘要,其中文模型有uer/t5-base-chinese-cluecorpussmall等选择。根据需求选择合适工具,简单任务可用基础算法,高质量摘要则用深度学习模型。
文本摘要其实就是从一段较长的文字中提取出关键信息,用更短的语句表达出来。Python做这个事,靠的是NLP(自然语言处理)技术,常见的方式包括抽取式摘要和生成式摘要两种。下面讲几个实际操作的方法,让你能快速上手。

1. 使用现成库:PyTextRank 或 Sumy
如果你不想从头开始训练模型,直接用现成的库是最省事的办法。像 Sumy 和 PyTextRank 都是基于算法的文本摘要工具,适合大多数通用场景。
- Sumy 支持多种算法,比如 Luhn、Lsa、TextRank 等。
- PyTextRank 是基于 TextRank 的增强版,更适合英文文本,但也可以尝试用于中文预处理后的内容。
安装方法很简单:

pip install sumy pytextrank
使用示例(以 Sumy 为例):
from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.summarizers.text_rank import Summarizer parser = PlaintextParser.from_string("你的长文本内容", Tokenizer("english")) summarizer = Summarizer() summary = summarizer(parser.document, 3) # 提取3句话作为摘要 for sentence in summary: print(sentence)
注意:如果是中文,需要先进行分词处理,或者换用支持中文的库。

2. 中文文本摘要怎么做?
中文不像英文那样有空格分隔单词,所以处理起来稍微麻烦一点。你可以结合 jieba 分词 和 TextRank 算法 来实现中文摘要。
步骤大致如下:
- 对文本进行分词
- 构建词语之间的共现图
- 利用 PageRank 算法计算每个句子的重要性
- 选出得分最高的几个句子作为摘要
可以自己写代码实现,也可以用 Gensim 库里的 summarize
方法,它默认支持英文,但稍作调整也能处理中文。
示例代码:
from gensim.summarization import summarize import jieba.analyse text = "你的中文长文本内容" # 先用jieba做关键词提取试试看 keywords = jieba.analyse.extract_tags(text, top_n=5) print("关键词:", keywords) # 如果要摘要,可以用gensim的summarize函数(需对文本做适当预处理) summary = summarize(text, word_count=50) # 控制输出字数 print(summary)
注意:gensim 的 summarize 函数更适合比较规范的文章结构,如果是口语化或乱序文本,效果可能不理想。
3. 深度学习方法:用 HuggingFace Transformers
如果你希望得到更高质量的摘要,尤其是生成式的(不是简单抽取句子),那就要用深度学习模型了。目前最常用的就是 HuggingFace 的 Transformers 库,里面集成了很多预训练模型,比如 BART、T5、Pegasus 等。
这些模型可以做到“理解”原文并用自己的话重新组织摘要内容。
安装方式:
pip install transformers torch
使用示例(英文模型):
from transformers import pipeline summarizer = pipeline("summarization") text = "Your long article goes here..." summary = summarizer(text, max_length=50, min_length=25, do_sample=False) print(summary[0]['summary_text'])
中文的话,可以选择支持中文的模型,比如:
uer/t5-base-chinese-cluecorpussmall
bert4keras/roformer-sim-char-small
加载模型时指定即可:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name = "uer/t5-base-chinese-cluecorpussmall" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
基本上就这些。根据你的需求选择合适的方法就行。如果只是做个简单的摘要,用 Sumy 或 Gensim 就够了;要是想做高质量生成式摘要,那就上 Transformer 模型。关键是理解不同方法的适用场景,别一上来就跑模型,有时候简单的算法就够用了。
本篇关于《Python文本摘要技巧与NLP应用》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于文章的相关知识,请关注golang学习网公众号!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
356 收藏
-
240 收藏
-
211 收藏
-
258 收藏
-
261 收藏
-
350 收藏
-
160 收藏
-
358 收藏
-
247 收藏
-
264 收藏
-
151 收藏
-
407 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习