Pandas快速合并多文件提取关键数据
时间:2025-10-16 18:00:38 466浏览 收藏
还在为处理海量数据而烦恼?本文将深入讲解如何利用Python的Pandas库,**高效合并多文件数据,提取关键信息**。面对需要从多个文本文件中提取关联数据的需求,例如IP地址、MAC地址和端口信息的匹配,传统方法效率低下且代码复杂。本文提供了一种**基于Pandas DataFrame的解决方案**,通过merge操作,将多个文件的数据进行整合,实现IP地址到MAC地址再到端口的精确匹配,并最终以结构化的形式输出结果。告别繁琐的文件操作,**掌握Pandas高效数据处理技巧**,让你的数据分析事半功倍!文章包含完整代码示例,助你轻松上手。

场景需求:多文件数据关联与信息提取
在日常的数据处理任务中,我们经常会遇到需要从多个关联文件中提取和整合信息的情况。例如,给定三个文件:
- file1.txt 包含一系列待查询的 IP 地址。
- file2.txt 包含 IP 地址到 MAC 地址的映射关系。
- file3.txt 包含 MAC 地址到端口的映射关系。
我们的目标是,对于 file1.txt 中的每个 IP 地址,首先在 file2.txt 中找到对应的 MAC 地址,然后利用这个 MAC 地址在 file3.txt 中找到对应的端口,最终以 "IP 地址 MAC 地址 端口" 的格式输出所有匹配的结果。
传统的文件处理方法,如逐行读取、嵌套循环和字符串匹配,在处理这类关联数据时往往效率低下且代码复杂,尤其当文件较大时,性能问题会更加突出。
Pandas 解决方案概览
Python 的 Pandas 库提供了一套强大的数据结构(DataFrame)和数据分析工具,特别适用于处理表格型数据。利用 Pandas,我们可以将每个文件视为一个 DataFrame,然后通过类似于 SQL 的 merge(合并)操作,高效地将这些 DataFrame 关联起来,从而轻松实现数据的整合和查询。这种方法不仅代码简洁,而且在处理大量数据时具有显著的性能优势。
数据准备:加载文件至 DataFrame
首先,我们需要将每个文本文件的内容加载到 Pandas DataFrame 中。在实际应用中,通常使用 pd.read_csv() 或 pd.read_table() 等函数从文件中读取数据。对于本教程的示例,我们将直接通过 Python 字典创建 DataFrame,以确保代码的自包含性和可运行性。
假设我们的原始文件内容如下:
file1.txt (IP地址列表):
1.1.1.1 1.1.1.2 1.1.1.3 1.1.1.6 1.1.1.11
file2.txt (IP到MAC的映射):
Protocol Address Age (min) Addr Type Interface Internet 1.1.1.1 5 6026.aa11.1111 A Ethernet1/49 Internet 1.1.1.2 - 0006.f2d2.2d2f A Vlan1 Internet 1.1.1.3 - 6026.aa33.3333 A Vlan1 Internet 1.1.1.4 0 Incomplete A Internet 1.1.1.5 0 Incomplete A Internet 1.1.1.6 64 fa16.6edb.6666 A Vlan1 Internet 1.1.1.11 23 fa16.7e7d.7777 A Vlan1
file3.txt (MAC到端口的映射):
Unicast Entries vlan mac address type protocols port ---------+---------------+--------+---------------------+------------------------- 1 6026.aa11.1111 static ip,ipx,assigned,other Switch 1 0006.f2d2.2d2f dynamic ip,ipx,assigned,other Ethernet1/24 1 6026.aa33.3333 dynamic ip,ipx,assigned,other Ethernet1/12 1 fa16.6edb.6666 dynamic ip,ipx,assigned,other Ethernet1/8 1 fa16.7e7d.7777 dynamic ip,ipx,assigned,other Ethernet1/10
对应的 DataFrame 创建代码如下:
import pandas as pd
# 假设 file1.txt 只有一列IP地址,无表头
# 实际读取文件示例: df1 = pd.read_csv('file1.txt', header=None, names=['ipv4'])
df1 = pd.DataFrame({"ipv4":{"0":"1.1.1.1","1":"1.1.1.2","2":"1.1.1.3","3":"1.1.1.6","4":"1.1.1.11"}})
# 假设 file2.txt 有表头,并且是空格分隔
# 实际读取文件示例: df2 = pd.read_csv('file2.txt', delim_whitespace=True)
df2 = pd.DataFrame({
"Protocol":{ "0":"Internet", "1":"Internet", "2":"Internet", "3":"Internet", "4":"Internet", "5":"Internet", "6":"Internet" },
"Address":{ "0":"1.1.1.1", "1":"1.1.1.2", "2":"1.1.1.3", "3":"1.1.1.4", "4":"1.1.1.5", "5":"1.1.1.6", "6":"1.1.1.11" },
"Age (min)":{ "0":"5", "1":"-", "2":"-", "3":"0", "4":"0", "5":"64", "6":"23" },
"Addr":{ "0":"6026.aa11.1111", "1":"0006.f2d2.2d2f", "2":"6026.aa33.3333", "3":"Incomplete", "4":"Incomplete", "5":"fa16.6edb.6666", "6":"fa16.7e7d.7777" },
"Type":{ "0":"A", "1":"A", "2":"A", "3":"A", "4":"A", "5":"A", "6":"A" },
"Interface":{ "0":"Ethernet1\/49", "1":"Vlan1", "2":"Vlan1", "3":None, "4":None, "5":"Vlan1", "6":"Vlan1" }
})
# 假设 file3.txt 有表头,并且是空格分隔
# 实际读取文件示例: df3 = pd.read_csv('file3.txt', delim_whitespace=True, skiprows=[1]) # skiprows跳过分隔线
df3 = pd.DataFrame({
"vlan":{"0":1,"1":1,"2":1,"3":1,"4":1},
"mac address":{"0":"6026.aa11.1111","1":"0006.f2d2.2d2f","2":"6026.aa33.3333","3":"fa16.6edb.6666","4":"fa16.7e7d.7777"},
"type":{"0":"static","1":"dynamic","2":"dynamic","3":"dynamic","4":"dynamic"},
"protocols":{"0":"ip,ipx,assigned,other","1":"ip,ipx,assigned,other","2":"ip,ipx,assigned,other","3":"ip,ipx,assigned,other","4":"ip,ipx,assigned,other"},
"port":{"0":"Switch","1":" Ethernet1\\/24","2":" Ethernet1\\/12","3":" Ethernet1\\/8","4":" Ethernet1\\/10"}})核心操作:使用 merge 函数整合数据
Pandas 的 merge 函数是实现 DataFrame 之间关联的核心工具。它类似于 SQL 中的 JOIN 操作,可以根据一个或多个共同的列将两个 DataFrame 合并。
在本例中,我们需要进行两次合并:
- 第一次合并:将 df1(包含IP地址)与 df2(包含IP到MAC的映射)合并。
- df1 中的 ipv4 列与 df2 中的 Address 列是共同的关联键。
- 我们使用 how="inner" 来确保只有在两个 DataFrame 中都存在的 IP 地址才会被保留。
- 第二次合并:将第一次合并的结果与 df3(包含MAC到端口的映射)合并。
- 第一次合并结果中的 Addr 列(即MAC地址)与 df3 中的 mac address 列是共同的关联键。
合并操作如下:
# 第一次合并:根据IP地址关联 df1 和 df2 # left_on="ipv4" 指 df1 的关联列,right_on="Address" 指 df2 的关联列 merged_df_ip_mac = df1.merge(df2, how="inner", left_on="ipv4", right_on="Address") # 第二次合并:根据MAC地址关联第一次合并的结果和 df3 # left_on="Addr" 指 merged_df_ip_mac 的关联列,right_on="mac address" 指 df3 的关联列 maindf = merged_df_ip_mac.merge(df3, how="inner", left_on="Addr", right_on="mac address")
通过这两次 inner 合并,maindf 中将只包含那些在所有三个文件中都能找到对应关系的 IP、MAC 和端口信息。
结果输出:提取并格式化所需信息
合并完成后,maindf 包含了所有我们需要的关联数据。现在,我们只需要从 maindf 中选择我们关心的列 (ipv4, Addr, port),并按照指定格式输出。
# 提取所需的列
result_df = maindf[["ipv4", "Addr", "port"]]
# 按照指定格式打印结果
print("期望输出:")
for index, row in result_df.iterrows():
print(f"ip {row['ipv4']} addr {row['Addr']} port {row['port']}")这将产生以下输出:
ip 1.1.1.1 addr 6026.aa11.1111 port Switch ip 1.1.1.2 addr 0006.f2d2.2d2f port Ethernet1/24 ip 1.1.1.3 addr 6026.aa33.3333 port Ethernet1/12 ip 1.1.1.6 addr fa16.6edb.6666 port Ethernet1/8 ip 1.1.1.11 addr fa16.7e7d.7777 port Ethernet1/10
完整示例代码
以下是整合了所有步骤的完整 Python 代码:
import pandas as pd
# 1. 数据准备:加载文件至 DataFrame (此处为演示目的,直接创建DataFrame)
# 实际文件读取示例:
# df1 = pd.read_csv('file1.txt', header=None, names=['ipv4'])
# df2 = pd.read_csv('file2.txt', delim_whitespace=True)
# df3 = pd.read_csv('file3.txt', delim_whitespace=True, skiprows=[1]) # 假设需要跳过第二行分隔线
df1 = pd.DataFrame({"ipv4":{"0":"1.1.1.1","1":"1.1.1.2","2":"1.1.1.3","3":"1.1.1.6","4":"1.1.1.11"}})
df2 = pd.DataFrame({
"Protocol":{ "0":"Internet", "1":"Internet", "2":"Internet", "3":"Internet", "4":"Internet", "5":"Internet", "6":"Internet" },
"Address":{ "0":"1.1.1.1", "1":"1.1.1.2", "2":"1.1.1.3", "3":"1.1.1.4", "4":"1.1.1.5", "5":"1.1.1.6", "6":"1.1.1.11" },
"Age (min)":{ "0":"5", "1":"-", "2":"-", "3":"0", "4":"0", "5":"64", "6":"23" },
"Addr":{ "0":"6026.aa11.1111", "1":"0006.f2d2.2d2f", "2":"6026.aa33.3333", "3":"Incomplete", "4":"Incomplete", "5":"fa16.6edb.6666", "6":"fa16.7e7d.7777" },
"Type":{ "0":"A", "1":"A", "2":"A", "3":"A", "4":"A", "5":"A", "6":"A" },
"Interface":{ "0":"Ethernet1\/49", "1":"Vlan1", "2":"Vlan1", "3":None, "4":None, "5":"Vlan1", "6":"Vlan1" }
})
df3 = pd.DataFrame({
"vlan":{"0":1,"1":1,"2":1,"3":1,"4":1},
"mac address":{"0":"6026.aa11.1111","1":"0006.f2d2.2d2f","2":"6026.aa33.3333","3":"fa16.6edb.6666","4":"fa16.7e7d.7777"},
"type":{"0":"static","1":"dynamic","2":"dynamic","3":"dynamic","4":"dynamic"},
"protocols":{"0":"ip,ipx,assigned,other","1":"ip,ipx,assigned,other","2":"ip,ipx,assigned,other","3":"ip,ipx,assigned,other","4":"ip,ipx,assigned,other"},
"port":{"0":"Switch","1":" Ethernet1\\/24","2":" Ethernet1\\/12","3":" Ethernet1\\/8","4":" Ethernet1\\/10"}})
# 2. 核心操作:使用 merge 函数整合数据
# 第一次合并:df1 (ipv4) -> df2 (Address, Addr)
merged_df_ip_mac = df1.merge(df2, how="inner", left_on="ipv4", right_on="Address")
# 第二次合并:merged_df_ip_mac (Addr) -> df3 (mac address, port)
maindf = merged_df_ip_mac.merge(df3, how="inner", left_on="Addr", right_on="mac address")
# 3. 结果输出:提取并格式化所需信息
result_df = maindf[["ipv4", "Addr", "port"]]
print("最终匹配结果:")
for index, row in result_df.iterrows():
print(f"ip {row['ipv4']} addr {row['Addr']} port {row['port']}")注意事项
- 文件读取参数:
- pd.read_csv() 是读取 CSV 文件的常用函数,但它也可以处理其他分隔符的文件。对于空格或不规则分隔符的文件,可以使用 sep='\s+' 或 delim_whitespace=True。
- 如果文件没有表头,需要设置 header=None,并可以通过 names 参数手动指定列名。
- 如果文件
到这里,我们也就讲完了《Pandas快速合并多文件提取关键数据》的内容了。个人认为,基础知识的学习和巩固,是为了更好的将其运用到项目中,欢迎关注golang学习网公众号,带你了解更多关于的知识点!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
296 收藏
-
351 收藏
-
157 收藏
-
485 收藏
-
283 收藏
-
349 收藏
-
291 收藏
-
204 收藏
-
401 收藏
-
227 收藏
-
400 收藏
-
327 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习