Pydantic复杂数据校验技巧全解析
时间:2025-10-23 11:21:29 139浏览 收藏
欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《Pydantic 复杂数据校验全攻略》,这篇文章主要讲到等等知识,如果你对文章相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!

本文介绍了如何使用 Pydantic 在 Python 中验证复杂的数据结构,特别是包含固定键名和特定类型列表的字典。通过定义 Pydantic 模型,并结合 `conlist` 类型,可以确保输入数据的结构和类型符合预期,从而提高代码的健壮性和可维护性。
Pydantic 是一个强大的 Python 库,用于数据验证和设置管理。它使用 Python 类型提示来定义数据结构,并在运行时强制执行类型约束。本文将重点介绍如何使用 Pydantic 验证具有特定结构的复杂数据,例如包含固定键名和特定长度列表的字典。
定义 Pydantic 模型
要验证复杂的数据结构,首先需要定义一个 Pydantic 模型来描述数据的形状。在给定的示例中,我们需要验证一个包含 filters 键的字典,该键的值是一个包含 simple 和 combined 键的字典。simple 和 combined 的值都是包含三个字符串的列表的列表。
我们可以使用 BaseModel 类来定义 Pydantic 模型。BaseModel 是所有 Pydantic 模型的基类。我们可以使用类型提示来定义模型的字段及其类型。
from pydantic import BaseModel, conlist
from typing import List
class SimpleCombine(BaseModel):
simple : List[conlist(str, min_length=3, max_length=3)]
combined : List[conlist(str, min_length=3, max_length=3)]
class Filter(BaseModel):
filters : SimpleCombine在上面的代码中,我们定义了两个 Pydantic 模型:SimpleCombine 和 Filter。
- SimpleCombine 模型包含两个字段:simple 和 combined。这两个字段的类型都是 List[conlist(str, min_length=3, max_length=3)]。conlist 类型是 Pydantic 提供的类型,用于指定列表的最小和最大长度。在这种情况下,我们指定列表的长度必须为 3,并且列表中的所有元素都必须是字符串。
- Filter 模型包含一个字段:filters。该字段的类型是 SimpleCombine,也就是我们刚才定义的模型。
使用 Pydantic 模型进行验证
定义了 Pydantic 模型之后,就可以使用它来验证数据了。可以通过创建模型的实例来验证数据。如果数据与模型的定义不匹配,Pydantic 将引发一个 ValidationError 异常。
data = {
"filters": {
"simple": [["a", "b", "c"], ["d", "e", "f"]],
"combined": [["g", "h", "i"], ["j", "k", "l"]]
}
}
try:
filter_data = Filter(**data)
print("Validation successful!")
print(filter_data)
except Exception as e:
print(f"Validation failed: {e}")在上面的代码中,我们创建了一个 Filter 模型的实例,并将 data 字典作为参数传递给构造函数。如果 data 字典与 Filter 模型的定义匹配,则会成功创建一个 Filter 模型的实例。否则,会引发一个 ValidationError 异常。
在 FastAPI 中使用 Pydantic
Pydantic 与 FastAPI 框架无缝集成。可以在 FastAPI 路由中使用 Pydantic 模型来定义请求体和响应体。
from fastapi import FastAPI
from pydantic import BaseModel, conlist
from typing import List
app = FastAPI()
class SimpleCombine(BaseModel):
simple : List[conlist(str, min_length=3, max_length=3)]
combined : List[conlist(str, min_length=3, max_length=3)]
class Filter(BaseModel):
filters : SimpleCombine
@app.post("/validate")
async def validate_data(filter_data: Filter):
return {"message": "Data is valid!", "data": filter_data}在上面的代码中,我们定义了一个 FastAPI 路由 /validate,该路由接受一个 Filter 类型的请求体。FastAPI 会自动使用 Pydantic 来验证请求体。如果请求体与 Filter 模型的定义不匹配,FastAPI 将返回一个 HTTP 422 错误。
注意事项
- Pydantic 模型是不可变的。这意味着一旦创建了模型的实例,就不能修改其字段的值。
- Pydantic 模型可以使用 Python 类型提示来定义字段的类型。Pydantic 支持所有标准的 Python 类型,以及一些额外的类型,例如 conlist。
- Pydantic 可以自动将数据转换为正确的类型。例如,如果将一个字符串传递给一个整数类型的字段,Pydantic 会自动将该字符串转换为整数。
总结
本文介绍了如何使用 Pydantic 在 Python 中验证复杂的数据结构。通过定义 Pydantic 模型,并结合 conlist 类型,可以确保输入数据的结构和类型符合预期,从而提高代码的健壮性和可维护性。Pydantic 与 FastAPI 框架无缝集成,可以在 FastAPI 路由中使用 Pydantic 模型来定义请求体和响应体。
好了,本文到此结束,带大家了解了《Pydantic复杂数据校验技巧全解析》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
296 收藏
-
351 收藏
-
157 收藏
-
485 收藏
-
283 收藏
-
349 收藏
-
291 收藏
-
204 收藏
-
401 收藏
-
227 收藏
-
400 收藏
-
327 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习