登录
首页 >  文章 >  python教程

Pydantic复杂数据校验技巧全解析

时间:2025-10-23 11:21:29 139浏览 收藏

欢迎各位小伙伴来到golang学习网,相聚于此都是缘哈哈哈!今天我给大家带来《Pydantic 复杂数据校验全攻略》,这篇文章主要讲到等等知识,如果你对文章相关的知识非常感兴趣或者正在自学,都可以关注我,我会持续更新相关文章!当然,有什么建议也欢迎在评论留言提出!一起学习!

使用 Pydantic 进行复杂数据结构的验证

本文介绍了如何使用 Pydantic 在 Python 中验证复杂的数据结构,特别是包含固定键名和特定类型列表的字典。通过定义 Pydantic 模型,并结合 `conlist` 类型,可以确保输入数据的结构和类型符合预期,从而提高代码的健壮性和可维护性。

Pydantic 是一个强大的 Python 库,用于数据验证和设置管理。它使用 Python 类型提示来定义数据结构,并在运行时强制执行类型约束。本文将重点介绍如何使用 Pydantic 验证具有特定结构的复杂数据,例如包含固定键名和特定长度列表的字典。

定义 Pydantic 模型

要验证复杂的数据结构,首先需要定义一个 Pydantic 模型来描述数据的形状。在给定的示例中,我们需要验证一个包含 filters 键的字典,该键的值是一个包含 simple 和 combined 键的字典。simple 和 combined 的值都是包含三个字符串的列表的列表。

我们可以使用 BaseModel 类来定义 Pydantic 模型。BaseModel 是所有 Pydantic 模型的基类。我们可以使用类型提示来定义模型的字段及其类型。

from pydantic import BaseModel, conlist
from typing import List

class SimpleCombine(BaseModel):
    simple :  List[conlist(str, min_length=3, max_length=3)]
    combined : List[conlist(str, min_length=3, max_length=3)]

class Filter(BaseModel):
    filters :  SimpleCombine

在上面的代码中,我们定义了两个 Pydantic 模型:SimpleCombine 和 Filter。

  • SimpleCombine 模型包含两个字段:simple 和 combined。这两个字段的类型都是 List[conlist(str, min_length=3, max_length=3)]。conlist 类型是 Pydantic 提供的类型,用于指定列表的最小和最大长度。在这种情况下,我们指定列表的长度必须为 3,并且列表中的所有元素都必须是字符串。
  • Filter 模型包含一个字段:filters。该字段的类型是 SimpleCombine,也就是我们刚才定义的模型。

使用 Pydantic 模型进行验证

定义了 Pydantic 模型之后,就可以使用它来验证数据了。可以通过创建模型的实例来验证数据。如果数据与模型的定义不匹配,Pydantic 将引发一个 ValidationError 异常。

data = {
    "filters": {
        "simple": [["a", "b", "c"], ["d", "e", "f"]],
        "combined": [["g", "h", "i"], ["j", "k", "l"]]
    }
}

try:
    filter_data = Filter(**data)
    print("Validation successful!")
    print(filter_data)
except Exception as e:
    print(f"Validation failed: {e}")

在上面的代码中,我们创建了一个 Filter 模型的实例,并将 data 字典作为参数传递给构造函数。如果 data 字典与 Filter 模型的定义匹配,则会成功创建一个 Filter 模型的实例。否则,会引发一个 ValidationError 异常。

在 FastAPI 中使用 Pydantic

Pydantic 与 FastAPI 框架无缝集成。可以在 FastAPI 路由中使用 Pydantic 模型来定义请求体和响应体。

from fastapi import FastAPI
from pydantic import BaseModel, conlist
from typing import List

app = FastAPI()

class SimpleCombine(BaseModel):
    simple :  List[conlist(str, min_length=3, max_length=3)]
    combined : List[conlist(str, min_length=3, max_length=3)]

class Filter(BaseModel):
    filters :  SimpleCombine

@app.post("/validate")
async def validate_data(filter_data: Filter):
    return {"message": "Data is valid!", "data": filter_data}

在上面的代码中,我们定义了一个 FastAPI 路由 /validate,该路由接受一个 Filter 类型的请求体。FastAPI 会自动使用 Pydantic 来验证请求体。如果请求体与 Filter 模型的定义不匹配,FastAPI 将返回一个 HTTP 422 错误。

注意事项

  • Pydantic 模型是不可变的。这意味着一旦创建了模型的实例,就不能修改其字段的值。
  • Pydantic 模型可以使用 Python 类型提示来定义字段的类型。Pydantic 支持所有标准的 Python 类型,以及一些额外的类型,例如 conlist。
  • Pydantic 可以自动将数据转换为正确的类型。例如,如果将一个字符串传递给一个整数类型的字段,Pydantic 会自动将该字符串转换为整数。

总结

本文介绍了如何使用 Pydantic 在 Python 中验证复杂的数据结构。通过定义 Pydantic 模型,并结合 conlist 类型,可以确保输入数据的结构和类型符合预期,从而提高代码的健壮性和可维护性。Pydantic 与 FastAPI 框架无缝集成,可以在 FastAPI 路由中使用 Pydantic 模型来定义请求体和响应体。

好了,本文到此结束,带大家了解了《Pydantic复杂数据校验技巧全解析》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多文章知识!

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>