登录
首页 >  文章 >  python教程

Python热力图绘制方法有哪些?

时间:2025-12-11 17:42:25 281浏览 收藏

推广推荐
免费电影APP ➜
支持 PC / 移动端,安全直达

从现在开始,我们要努力学习啦!今天我给大家带来《Python绘制热力图常用方法有哪些?》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!

Python绘制热力图主要使用Seaborn和Matplotlib。Seaborn语法简洁,适合快速展示相关性矩阵,如sns.heatmap(data, annot=True, cmap='coolwarm');Matplotlib通过imshow()提供更细粒度控制,适用于自定义场景。结合pandas的corr()方法可直观分析变量相关性,Seaborn更实用,Matplotlib更灵活,按需选用。

python绘制热力图有何方法?

Python绘制热力图主要通过可视化库实现,常用方法集中在Matplotlib和Seaborn上,操作简便且效果直观。数据通常以二维数组或DataFrame形式传入,适合展示相关性矩阵、密度分布等场景。

使用Seaborn绘制热力图

Seaborn是基于Matplotlib的高级绘图库,语法简洁,颜色配置美观,适合快速出图。

基本用法如下:

  • 导入seaborn和matplotlib.pyplot
  • 准备数据,如pandas的DataFrame
  • 调用sns.heatmap()函数,设置参数如是否显示数值、颜色映射、是否显示色条等
示例代码:
<code>import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
<h1>示例数据</h1><p>data = pd.DataFrame([[1, 5, 6], [4, 3, 2], [7, 8, 9]], columns=['A', 'B', 'C'])
sns.heatmap(data, annot=True, cmap='coolwarm', center=0)
plt.show()</p></code>

使用Matplotlib绘制基础热力图

Matplotlib提供更底层控制,适合需要自定义布局或集成到复杂图形中的情况。

可通过imshow()函数实现:

  • 传入二维数据矩阵
  • 设置cmap参数选择颜色方案
  • 配合plt.colorbar()显示颜色标尺
示例代码:
<code>import matplotlib.pyplot as plt
import numpy as np
<p>data = np.random.rand(5, 5)
plt.imshow(data, cmap='viridis')
plt.colorbar()
plt.xticks(range(5), ['X1', 'X2', 'X3', 'X4', 'X5'])
plt.yticks(range(5), ['Y1', 'Y2', 'Y3', 'Y4', 'Y5'])
plt.show()</p></code>

结合Pandas进行相关性分析绘图

在数据分析中,常对DataFrame计算corr()得到相关系数矩阵,再用热力图展示。

步骤包括:

  • 使用df.corr()生成相关性矩阵
  • 过滤或处理缺失值
  • 直接将结果传给sns.heatmap()
这样能清晰展现变量之间的正负相关趋势,便于特征选择。

基本上就这些,Seaborn最实用,Matplotlib更灵活,按需选择即可。

文中关于的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《Python热力图绘制方法有哪些?》文章吧,也可关注golang学习网公众号了解相关技术文章。

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>