登录
首页 >  文章 >  python教程

Python爬虫教程:网页抓取与解析实战

时间:2026-01-07 13:00:41 363浏览 收藏

小伙伴们对文章编程感兴趣吗?是否正在学习相关知识点?如果是,那么本文《Python爬虫实战教程:网页抓取与解析详解》,就很适合你,本篇文章讲解的知识点主要包括。在之后的文章中也会多多分享相关知识点,希望对大家的知识积累有所帮助!

Python爬虫实战核心是requests获取内容、BeautifulSoup/lxml解析HTML并提取数据,关键在于理解网页结构、应对反爬、保障稳定性;需安装requests、beautifulsoup4、lxml,建议虚拟环境运行,并通过开发者工具分析静态/动态结构,加headers、控频、验状态码、规范编码,最终存为CSV/JSON/数据库。

Python爬虫实战项目_网页抓取与解析完整教程【教程】

Python爬虫实战项目的核心在于:用requests获取网页内容,用BeautifulSoup或lxml解析HTML结构,再按需提取标题、链接、文本等数据。关键不是写得多快,而是理解网页结构、处理反爬细节、保证代码稳定可维护。

准备环境与基础工具

安装必要库只需三条命令:

  • pip install requests —— 发起HTTP请求,获取网页源码
  • pip install beautifulsoup4 —— 解析HTML,定位标签,提取文本最友好
  • pip install lxml —— 作为BS4的解析器,速度比默认html.parser快不少

建议新建虚拟环境运行,避免包冲突。首次运行时加个简单测试:

import requests
from bs4 import BeautifulSoup
<p>res = requests.get("<a target='_blank'  href='https://www.17golang.com/gourl/?redirect=MDAwMDAwMDAwML57hpSHp6VpkrqbYLx2eayza4KafaOkbLS3zqSBrJvPsa5_0Ia6sWuR4Juaq6t9nq5roGCUgXuytMyerpV6iZXHe3vUmsyZr5vTk6bDeoKox3yFmnmyhqK_qrtog3Z4lb6InJSSp62xhph6mq-cm2i0jaCcfbOdorLdtKSCiYSXva6coQ' rel='nofollow'>https://httpbin.org/html</a>")
soup = BeautifulSoup(res.text, "lxml")
print(soup.title.string)  # 输出:Herman Melville - Moby-Dick</p>

分析网页结构并定位目标数据

打开浏览器开发者工具(F12),切换到Elements标签页,右键目标内容 → “Inspect”,观察其所在标签、class、id或父级路径。不要直接抄CSS选择器,先确认是否动态加载(滚动才出现?点击才加载?)。

  • 静态页面:直接用 soup.find("div", class_="post-title")soup.select("h1.title a")
  • 含JavaScript渲染:考虑用Selenium或检查XHR请求,找真实数据接口(如JSON API)
  • 有分页:观察URL规律(page=1/list/2/),用循环构造请求

处理常见反爬与请求规范

多数网站会拒绝无头请求。加headers是最基础也最有效的应对方式:

headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36"
}
res = requests.get(url, headers=headers)
  • 控制请求频率:用 time.sleep(1) 避免短时间高频访问
  • 处理编码问题:若中文乱码,尝试 res.encoding = "utf-8"res.apparent_encoding
  • 检查状态码:if res.status_code == 200: 再解析,否则打印错误信息

保存结果到文件或数据库

爬取后数据要落地才有价值。小量数据用CSV或JSON最方便:

  • 存为CSV:用 csv.writerpandas.DataFrame.to_csv()
  • 存为JSON:用 json.dump(data_list, open("result.json", "w", encoding='utf-8'))
  • 进数据库:pymysql(MySQL)、sqlite3(轻量本地)或peewee(ORM简化操作)

示例保存字典列表:

import json
data = [{"title": "Python入门", "url": "https://example.com/1"}, ...]
with open("articles.json", "w", encoding="utf-8") as f:
    json.dump(data, f, ensure_ascii=False, indent=2)

不复杂但容易忽略:每次爬完检查数据完整性,比如字段是否为空、链接是否拼错、日期格式是否统一。加几行日志或简单断言,能省下后期大量清洗时间。

理论要掌握,实操不能落!以上关于《Python爬虫教程:网页抓取与解析实战》的详细介绍,大家都掌握了吧!如果想要继续提升自己的能力,那么就来关注golang学习网公众号吧!

前往漫画官网入口并下载 ➜
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>