登录
首页 >  文章 >  python教程

Pandas滚动均值优化方法详解

时间:2026-02-05 23:09:44 300浏览 收藏

最近发现不少小伙伴都对文章很感兴趣,所以今天继续给大家介绍文章相关的知识,本文《Pandas 时间窗口滚动均值优化技巧》主要内容涉及到等等知识点,希望能帮到你!当然如果阅读本文时存在不同想法,可以在评论中表达,但是请勿使用过激的措辞~

如何显著加速 Pandas 中基于时间窗口的分组滚动均值计算?

本文介绍一种比传统 `groupby().apply(rolling())` 快约 15 倍的替代方案,通过重构索引与预聚合滚动计算,大幅提升大规模时序分组滚动均值(如 180 天窗口)的执行效率。

在处理高频时序分组分析任务(如赛马数据中按“马匹+练马师”组合统计过去 180 天的平均积分)时,Pandas 默认的链式写法虽然语义清晰,但性能瓶颈明显:

# ❌ 原始低效写法(约 18.5 秒 / 10 万行)
df['HorseRaceCount90d'] = (
    df.groupby(['Horse', 'Trainer'], group_keys=False)
      .apply(lambda x: x.rolling(window='180D', on='RaceDate')['Points'].mean())
)

该方式对每个分组单独执行 rolling(..., on='RaceDate'),触发大量重复索引对齐与时间窗口判定,且 apply 无法被 Pandas 底层向量化优化,导致严重性能衰减。

✅ 更优解:先设索引 → 分组滚动 → 合并回原表
核心思路是将时间列设为索引,使 rolling('180D') 直接作用于 DatetimeIndex,避免每次调用都解析 on= 参数;再利用 groupby(...)['Points'].rolling(...).mean() 的原生高效实现,最后通过三键(Horse, Trainer, RaceDate)精准合并结果:

# ✅ 高效写法(约 1.18 秒 / 10 万行,提速 15×)
rolling_result = (
    df.set_index('RaceDate')                    # 关键:以时间列为索引
      .groupby(['Horse', 'Trainer'])['Points']  # 按业务维度分组
      .rolling('180D')                          # 原生支持时间字符串窗口
      .mean()                                   # 向量化滚动均值
      .rename('HorseRaceCount90d')              # 命名结果列
)

# 通过 Horse + Trainer + RaceDate 三字段精确匹配合并(确保时序对齐)
df = df.merge(
    rolling_result,
    left_on=['Horse', 'Trainer', 'RaceDate'],
    right_index=True,
    how='left'
)

⚠️ 注意事项:

  • set_index('RaceDate') 前务必确认 RaceDate 已为 datetime64[ns] 类型(可用 pd.to_datetime() 强制转换);
  • merge 时必须包含全部分组键(Horse, Trainer)和时间戳(RaceDate),否则可能因索引重复或错位导致 NaN 或数据错乱;
  • 若原始数据存在同一 (Horse, Trainer, RaceDate) 多条记录(如多场同日赛事),需提前去重或聚合,否则 merge 可能产生笛卡尔膨胀;
  • 此方法天然支持 min_periods=1(默认行为),如需严格要求满窗才计算,可追加 .rolling('180D', min_periods=180),但注意天数精度受实际日期密度影响。

? 扩展建议:
若需批量计算多个时间窗口(如 30D/90D/180D),可封装为函数复用索引结构;对于超大规模数据(千万级+),建议结合 dask.dataframe 或 polars 进一步加速——后者在同类滚动操作中通常比 Pandas 再快 2–5 倍。

总之,避开 apply、善用索引驱动的原生 rolling、精准 merge 回填,是优化 Pandas 时间感知分组滚动计算的黄金三角。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。

前往漫画官网入口并下载 ➜
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>