登录
首页 >  文章 >  python教程

Python迭代器原理与使用技巧详解

时间:2026-02-18 17:47:40 329浏览 收藏

本文深入剖析了Python迭代器的核心机制——迭代协议,明确区分了可迭代对象与迭代器的本质差异,澄清了诸如“列表就是迭代器”等常见误区,并通过手动实现计数迭代器和生成器两种方式,直观展现状态管理、StopIteration抛出及惰性求值的关键逻辑;更进一步,结合文件逐行读取与链式过滤的实战案例,展示了如何利用迭代器构建内存高效、可组合、易扩展的数据处理流水线,让读者真正掌握Python中“按需计算”的强大范式。

Python迭代器系统学习路线第48讲_核心原理与实战案例详解【指导】

Python迭代器的核心在于理解 迭代协议 —— 即对象只要实现了 __iter__()__next__() 方法,就能被 for 循环、next() 等消费。它不是语法糖,而是 Python 迭代行为的底层契约。

迭代器 vs 可迭代对象:关键区分

可迭代对象(如 list、str、dict、range)只须实现 __iter__(),返回一个迭代器;迭代器自身必须同时具备 __iter__()(通常返回 self)和 __next__()(返回下一个值或抛出 StopIteration)。 常见误区:误以为 list 本身是迭代器——其实它是可迭代对象,每次调用 iter(list) 才生成新的迭代器。

手动实现一个迭代器:掌握控制流逻辑

写一个从 1 累加到 n 的迭代器,能清晰看到状态维护与边界处理:

class CountUp:
    def __init__(self, n):
        self.n = n
        self.current = 1
<pre class="brush:python;toolbar:false;">def __iter__(self):
    return self  # 迭代器自身可被迭代

def __next__(self):
    if self.current > self.n:
        raise StopIteration
    value = self.current
    self.current += 1
    return value

使用

for i in CountUp(3): print(i) # 输出 1, 2, 3

  • __next__ 必须显式管理状态(如 self.current
  • 到达终点时必须抛出 StopIteration,不能返回 None 或静默退出
  • __iter__ 返回 self 是让该对象支持多次遍历(但注意:本例中它是一次性耗尽的,如需重复使用,应在 __iter__ 中重置状态)

生成器:更简洁的迭代器写法

yield 定义的函数会自动返回生成器对象(即迭代器),Python 替你封装了状态保存、异常处理和暂停恢复逻辑。

def count_up_gen(n):
    for i in range(1, n+1):
        yield i
<h1>等价于上面的 CountUp 类,但代码量少、不易出错</h1><p>gen = count_up_gen(3)
print(next(gen))  # 1
print(next(gen))  # 2</p>
  • 生成器函数首次调用不执行逻辑,只返回生成器对象
  • 每次 next() 调用才运行到下一个 yield,并保存局部变量上下文
  • 函数自然结束时,自动生成 StopIteration

实战场景:文件逐行读取 + 链式过滤

避免一次性加载大文件到内存,用迭代器组合实现内存友好的数据流水线:

def read_lines(filename):
    with open(filename) as f:
        for line in f:  # 文件对象本身就是迭代器
            yield line.rstrip('\n')
<p>def non_empty(lines):
for line in lines:
if line.strip():
yield line</p><p>def long_lines(lines, min_len=10):
for line in lines:
if len(line) >= min_len:
yield line</p><h1>组合使用(惰性求值,无中间列表)</h1><p>for line in long_lines(non_empty(read_lines('data.txt'))):
print(repr(line))</p>
  • 每层都是迭代器,数据逐个流动,内存占用恒定
  • 整个链路在 for 启动时才开始执行,未用到的数据永不计算
  • 可轻松替换某环节(如换成正则过滤),不影响其他逻辑

终于介绍完啦!小伙伴们,这篇关于《Python迭代器原理与使用技巧详解》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

资料下载
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>