numpy中常见函数集合的快速入门指南
时间:2024-01-03 08:02:28 495浏览 收藏
从现在开始,努力学习吧!本文《numpy中常见函数集合的快速入门指南》主要讲解了等等相关知识点,我会在golang学习网中持续更新相关的系列文章,欢迎大家关注并积极留言建议。下面就先一起来看一下本篇正文内容吧,希望能帮到你!
快速了解numpy中常用的函数集合,需要具体代码示例
随着数据科学和机器学习的兴起,numpy成为了Python中最常用的科学计算库之一。numpy不仅提供了强大的多维数组对象,还提供了丰富的函数集合,可以进行数学运算、数组操作、统计分析和线性代数等操作。
为了快速了解numpy中常用的函数集合,下面将介绍一些常用的函数,并提供具体的代码示例。
- 创建数组
numpy提供了不同的函数来创建数组,包括将列表转换为数组、生成等差数列或随机数等。
import numpy as np array1 = np.array([1, 2, 3, 4, 5]) # 将列表转换为数组 print(array1) array2 = np.arange(1, 10, 2) # 生成等差数列,起始值为1,结束值为10,步长为2 print(array2) array3 = np.random.random((2, 3)) # 生成2行3列的随机数数组 print(array3)
- 数组运算
numpy提供了各种各样的数学运算函数,包括加减乘除、指数、对数、三角函数等。
import numpy as np array1 = np.array([1, 2, 3, 4, 5]) array2 = np.array([6, 7, 8, 9, 10]) array_sum = np.add(array1, array2) # 数组相加 print(array_sum) array_diff = np.subtract(array1, array2) # 数组相减 print(array_diff) array_mult = np.multiply(array1, array2) # 数组相乘 print(array_mult) array_div = np.divide(array1, array2) # 数组相除 print(array_div) array_exp = np.exp(array1) # 数组指数 print(array_exp) array_log = np.log(array1) # 数组对数 print(array_log) array_sin = np.sin(array1) # 数组正弦值 print(array_sin)
- 数组操作
numpy提供了多种对数组进行操作的函数,包括数组形状变换、数组拼接、数组切片等。
import numpy as np array1 = np.array([[1, 2, 3], [4, 5, 6]]) array2 = np.array([[7, 8, 9], [10, 11, 12]]) array_transpose = np.transpose(array1) # 数组转置 print(array_transpose) array_concatenate = np.concatenate((array1, array2), axis=0) # 数组垂直拼接 print(array_concatenate) array_slice = array1[0:2, 1:3] # 数组切片 print(array_slice)
- 统计分析
numpy提供了多种用于统计分析的函数,包括求和、求平均值、方差和标准差等。
import numpy as np array1 = np.array([1, 2, 3, 4, 5]) array_sum = np.sum(array1) # 数组元素求和 print(array_sum) array_mean = np.mean(array1) # 数组元素求平均值 print(array_mean) array_std = np.std(array1) # 数组元素求标准差 print(array_std)
- 线性代数
numpy提供了丰富的线性代数函数,可以进行矩阵相乘、矩阵求逆和矩阵特征值等操作。
import numpy as np matrix1 = np.array([[1, 2], [3, 4]]) matrix2 = np.array([[5, 6], [7, 8]]) matrix_dot = np.dot(matrix1, matrix2) # 矩阵相乘 print(matrix_dot) matrix_inv = np.linalg.inv(matrix1) # 求矩阵的逆 print(matrix_inv) matrix_eigen = np.linalg.eig(matrix1) # 求矩阵的特征值 print(matrix_eigen)
以上是numpy中常用的函数集合的代码示例。通过了解这些函数,我们可以更加灵活地进行数组操作、数学运算、统计分析和线性代数等计算。希望本文可以帮助读者更好地掌握numpy中的常用函数。
文中关于numpy集合函数的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《numpy中常见函数集合的快速入门指南》文章吧,也可关注golang学习网公众号了解相关技术文章。
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
379 收藏
-
297 收藏
-
182 收藏
-
322 收藏
-
485 收藏
-
450 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习