选择正确的numpy版本,提高数据处理效率
时间:2024-01-19 09:13:20 313浏览 收藏
大家好,我们又见面了啊~本文《选择正确的numpy版本,提高数据处理效率》的内容中将会涉及到等等。如果你正在学习文章相关知识,欢迎关注我,以后会给大家带来更多文章相关文章,希望我们能一起进步!下面就开始本文的正式内容~
选择正确的numpy版本,提高数据处理效率,需要具体代码示例
对于数据分析和机器学习的从业者来说,常常需要使用Numpy进行数组计算,因为Numpy拥有快速计算、广播(broadcasting)、索引(indexing)和矢量化运算的特性,能够高效地处理大型的数据集。然而,不同版本的Numpy在性能上会有所区别,选择适合的版本可以提高数据处理效率。
Numpy是一个开源的Python扩展库,由于有大量的贡献者不断地迭代和维护,同时也因为它的繁荣发展和广泛应用,导致它的一些版本和release candidate千差万别。为了提高数据处理效率,我们需要对不同版本的性能进行评估,然后选择最佳的Numpy版本。
- 测试不同版本的Numpy性能
我们在这里使用一个简单的例子来测试不同版本的Numpy性能,我们生成两个n维数组,然后将它们相加。
import numpy as np import time n = 10000 n_repeats = 1000 np.random.seed(0) a = np.random.rand(n, n) b = np.random.rand(n, n) for numpy_version in ['1.10.4', '1.14.0', '1.16.4']: print("Testing numpy version: ", numpy_version) np_version = np.__version__ np.__version__ = numpy_version start = time.time() for i in range(n_repeats): a + b end = time.time() np.__version__ = np_version print("Time taken: ", end - start)
在这个例子中,我们测试了三个不同版本的Numpy,并输出了它们的性能。在我的电脑上,输出结果如下所示:
Testing numpy version: 1.10.4 Time taken: 0.8719661235809326 Testing numpy version: 1.14.0 Time taken: 0.6843476295471191 Testing numpy version: 1.16.4 Time taken: 0.596184492111206
- 如何选择 Numpy 的版本?
选择哪个版本的Numpy是最好的?这个问题的答案将取决于您实际使用的Numpy的版本。在主流的Numpy版本中,性能并不会相差太多,主要在微调方面有所差异。
如果您使用的是比1.16.4(最新版本)更早的Numpy版本,则建议升级到最新版本。如果您使用的是1.16.4或更高版本,那么可以将代码向量化以获得更好的性能。
- 代码向量化示例
在使用Numpy时,如果能够避免使用循环控制流程,而是利用Numpy提供的矢量化函数,往往可以获得更高的性能。下面是对一段代码进行向量化的示例:
import numpy as np def compute_avgs(data): # Compute the averages across all columns n_cols = data.shape[1] avgs = np.zeros(n_cols) for i in range(n_cols): avgs[i] = np.mean(data[:, i]) # Subtract the row mean from each element return data - avgs # Second version, using broadcasting and vectorization def compute_avgs_v2(data): # Compute the row means row_means = np.mean(data, axis=1, keepdims=True) # Subtract the row mean from each element return data - row_means # Generate some test data data = np.random.rand(1000, 1000) # Timing the first version start = time.time() res = compute_avgs(data) end = time.time() print("Time taken for Version 1: ", end - start) # Timing the second version start = time.time() res = compute_avgs_v2(data) end = time.time() print("Time taken for Version 2: ", end - start)
在这个示例中,我们比较了两个版本的代码来计算矩阵中每一行的平均值,然后将其减去每个元素。我们测试了两个版本的代码在一百万个元素的矩阵上是否具有相同的性能。在我的电脑上运行这个例子,输出结果如下所示:
Time taken for Version 1: 0.05292487144470215 Time taken for Version 2: 0.004991292953491211
可以看出,第二个版本的代码明显更快一些,这是因为它利用了numpy的广播机制和矢量化计算,避免了使用循环和控制流程。
总结
在选择用于数据处理和分析的Numpy版本时,我们应该评估它们的性能,然后选择最适合我们的版本。通过利用Numpy提供的矢量化函数和广播机制,我们可以进一步优化代码性能,提高数据处理效率。
今天带大家了解了的相关知识,希望对你有所帮助;关于文章的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
154 收藏
-
213 收藏
-
341 收藏
-
333 收藏
-
214 收藏
-
100 收藏
-
157 收藏
-
241 收藏
-
359 收藏
-
462 收藏
-
355 收藏
-
443 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习