t-SNE算法的原理与Python代码实现解析
来源:网易伏羲
时间:2024-02-02 23:42:05 210浏览 收藏
从现在开始,我们要努力学习啦!今天我给大家带来《t-SNE算法的原理与Python代码实现解析》,感兴趣的朋友请继续看下去吧!下文中的内容我们主要会涉及到等等知识点,如果在阅读本文过程中有遇到不清楚的地方,欢迎留言呀!我们一起讨论,一起学习!
T分布随机邻域嵌入(t-SNE),是一种用于可视化的无监督机器学习算法,使用非线性降维技术,根据数据点与特征的相似性,试图最小化高维和低维空间中这些条件概率(或相似性)之间的差异,以在低维空间中完美表示数据点。
因此,t-SNE擅长在二维或三维的低维空间中嵌入高维数据以进行可视化。需要注意的是,t-SNE使用重尾分布来计算低维空间中两点之间的相似度,而不是高斯分布,这有助于解决拥挤和优化问题。而且离群值不影响t-SNE。
t-SNE算法步骤
1.找出高维空间中相邻点之间的成对相似性。
2.根据高维空间中点的成对相似性,将高维空间中的每个点映射到低维映射。
3.使用基于Kullback-Leibler散度(KL散度)的梯度下降找到最小化条件概率分布之间的不匹配的低维数据表示。
4.使用Student-t分布计算低维空间中两点之间的相似度。
MNIST数据集上实现t-SNE的Python代码
导入模块
# Importing Necessary Modules. import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.preprocessing import StandardScaler
读取数据
# Reading the data using pandas df = pd.read_csv('mnist_train.csv') # print first five rows of df print(df.head(4)) # save the labels into a variable l. l = df['label'] # Drop the label feature and store the pixel data in d. d = df.drop("label", axis = 1)
数据预处理
# Data-preprocessing: Standardizing the data from sklearn.preprocessing import StandardScaler standardized_data = StandardScaler().fit_transform(data) print(standardized_data.shape)
输出
# TSNE # Picking the top 1000 points as TSNE # takes a lot of time for 15K points data_1000 = standardized_data[0:1000, :] labels_1000 = labels[0:1000] model = TSNE(n_components = 2, random_state = 0) # configuring the parameters # the number of components = 2 # default perplexity = 30 # default learning rate = 200 # default Maximum number of iterations # for the optimization = 1000 tsne_data = model.fit_transform(data_1000) # creating a new data frame which # help us in plotting the result data tsne_data = np.vstack((tsne_data.T, labels_1000)).T tsne_df = pd.DataFrame(data = tsne_data, columns =("Dim_1", "Dim_2", "label")) # Plotting the result of tsne sn.FacetGrid(tsne_df, hue ="label", size = 6).map( plt.scatter, 'Dim_1', 'Dim_2').add_legend() plt.show()
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于文章的相关知识,也可关注golang学习网公众号。
声明:本文转载于:网易伏羲 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
282 收藏
-
213 收藏
-
225 收藏
-
176 收藏
-
356 收藏
-
183 收藏
-
484 收藏
-
135 收藏
-
377 收藏
-
405 收藏
-
463 收藏
-
417 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 511次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 498次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习