登录
首页 >  文章 >  python教程

Python 循环告别,向量化进阶

来源:51CTO.COM

时间:2024-01-23 08:02:41 416浏览 收藏

本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《Python 循环告别,向量化进阶》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~

我们在几乎所有的编程语言中都学习过循环。所以,默认情况下,只要有重复性的操作,我们就会开始实施循环。但是当我们处理大量的迭代(数百万/数十亿行)时,使用循环真是遭罪啊~,你可能会被卡住几个小时,后来才意识到这是行不通的。这就是在Python中实现向量化变得超级关键的地方。

什么是向量化?

向量化是在数据集上实现(NumPy)数组操作的技术。在后台,它对数组或系列的所有元素一次性进行操作(不像'for'循环那样一次操作一行)。

在这篇博客中,我们将看看一些用例,在这些用例中,我们可以很容易地用向量化代替Python循环。这将帮助你节省时间,并在编码方面变得更加熟练。

使用案例1:寻找数字的总和

首先,我们来看看一个基本的例子,即在Python中使用循环和向量来寻找数字的总和。

使用循环

import time 
start = time.time()

# 遍历之和
total = 0
# 遍历150万个数字
for item in range(0, 1500000):
total = total + item

print('sum is:' + str(total))
end = time.time()

print(end - start)

#1124999250000
#0.14 Seconds

使用向量化

import numpy as np

start = time.time()

# 向量化和--使用numpy进行向量化
# np.range创建从0到1499999的数字序列
print(np.sum(np.arange(1500000)))

end = time.time()
print(end - start)

##1124999250000
##0.008 Seconds

与使用范围函数的迭代相比,向量化的执行时间约18倍。在使用Pandas DataFrame时,这种差异将变得更加明显。

使用案例2:DataFrame数学运算

在数据科学中,当使用Pandas DataFrame时,开发者会使用循环来创建新的数学运算的派生列。

在下面的例子中,我们可以看到,在这样的用例中,循环可以很容易地被向量化所取代。

创建DataFrame

DataFrame是以行和列的形式存在的表格数据。

我们正在创建一个有500万行和4列的pandas DataFrame,其中充满了0到50之间的随机值。

import numpy as np
import pandas as pd
df = pd.DataFrame(np.random.randint(0, 50, 
size=(5000000, 4)),
columns=('a','b','c','d'))
df.shape
# (5000000, 5)
df.head()

再见!Python 循环,向量化已超神

我们将创建一个新的列'ratio',以找到列'd'和'c'的比率。

使用循环

import time 
start = time.time()

# Iterating through DataFrame using iterrows
for idx, row in df.iterrows():
# creating a new column 
df.at[idx,'ratio'] = 100 * (row["d"] / row["c"])
end = time.time()
print(end - start)
### 109 Seconds

使用向量化

start = time.time()
df["ratio"] = 100 * (df["d"] / df["c"])

end = time.time()
print(end - start)
### 0.12 seconds

我们可以看到DataFrame有了明显的改进,与python中的循环相比,向量化几乎快了1000倍。

使用案例3:DataFrame上If-else语句

我们实现了很多需要我们使用 "if-else" 类型逻辑的操作。我们可以很容易地用python中的向量化操作代替这些逻辑。

看一下下面的例子来更好地理解它(我们将使用在用例2中创建的DataFrame)。

想象一下,如何根据退出的列'a'的一些条件来创建一个新的列'e'。

使用循环

import time 
start = time.time()

# Iterating through DataFrame using iterrows
for idx, row in df.iterrows():
if row.a == 0:
df.at[idx,'e'] = row.d
elif (row.a  0):
df.at[idx,'e'] = (row.b)-(row.c)
else:
df.at[idx,'e'] = row.b + row.c

end = time.time()

print(end - start)
### Time taken: 177 seconds

使用向量化

start = time.time()
df['e'] = df['b'] + df['c']
df.loc[df['a'] 

与带有if-else语句的python循环相比,向量化操作要比循环快600倍。

使用案例4:解决机器学习/深度学习网络

深度学习要求我们解决多个复杂的方程,而且是针对数百万和数十亿行的方程。在Python中运行循环来解决这些方程是非常慢的,此时,向量化是最佳的解决方案。

例如,要计算以下多线性回归方程中数百万行的y值。

再见!Python 循环,向量化已超神

我们可以用向量化代替循环。

m1,m2,m3...的值是通过使用对应于x1,x2,x3...的数百万个值来解决上述方程而确定的(为了简单起见,只看一个简单的乘法步骤)

创建数据

>>> import numpy as np
>>> # 设置 m 的初始值 
>>> m = np.random.rand(1,5)
array([[0.49976103, 0.33991827, 0.60596021, 0.78518515, 0.5540753]])
>>> # 500万行的输入值
>>> x = np.random.rand(5000000,5)

再见!Python 循环,向量化已超神

使用循环

import numpy as np
m = np.random.rand(1,5)
x = np.random.rand(5000000,5)

total = 0
tic = time.process_time()

for i in range(0,5000000):
total = 0
for j in range(0,5):
total = total + x[i][j]*m[0][j] 

zer[i] = total 

toc = time.process_time()
print ("Computation time = " + str((toc - tic)) + "seconds")

####Computation time = 28.228 seconds

使用向量化

再见!Python 循环,向量化已超神

tic = time.process_time()

#dot product 
np.dot(x,m.T) 

toc = time.process_time()
print ("Computation time = " + str((toc - tic)) + "seconds")

####Computation time = 0.107 seconds

np.dot在后端实现了向量的矩阵乘法。与python中的循环相比,它的速度提高了165倍。

写在最后

Python中的向量化是非常快的,当在处理非常大的数据集时,建议你应该优先考虑向量化而不是循环。这样,随着时间的推移,你会逐渐习惯于按照向量化的思路来编写代码。

终于介绍完啦!小伙伴们,这篇关于《Python 循环告别,向量化进阶》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布文章相关知识,快来关注吧!

声明:本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>