Golang go-face:如何进行全面的人脸捕捉
来源:stackoverflow
时间:2024-02-17 10:18:17 148浏览 收藏
本篇文章主要是结合我之前面试的各种经历和实战开发中遇到的问题解决经验整理的,希望这篇《Golang go-face:如何进行全面的人脸捕捉》对你有很大帮助!欢迎收藏,分享给更多的需要的朋友学习~
问题内容
我正在使用 https://github.com/kagami/go-face 在 golang 中进行人脸识别,我尝试了 go-face 库中给出的示例。在该示例中,它检测图像中有多少张脸,并将脸部图像与其他多个脸部图像进行分类。
现在我只想在循环面部范围时裁剪每个面部。如果有人在捕捉每张面孔时遇到同样的问题,请尝试这个示例答案。
package main import ( "fmt" "log" "path/filepath" "github.com/Kagami/go-face" ) // Path to directory with models and test images. Here it's assumed it // points to the <https://github.com/Kagami/go-face-testdata> clone. const dataDir = "testdata" var ( modelsDir = filepath.Join(dataDir, "models") imagesDir = filepath.Join(dataDir, "images") ) // This example shows the basic usage of the package: create an // recognizer, recognize faces, classify them using few known ones. func main() { // Init the recognizer. rec, err := face.NewRecognizer(modelsDir) if err != nil { log.Fatalf("Can't init face recognizer: %v", err) } // Free the resources when you're finished. defer rec.Close() // Test image with 10 faces. testImagePristin := filepath.Join(imagesDir, "pristin.jpg") // Recognize faces on that image. faces, err := rec.RecognizeFile(testImagePristin) if err != nil { log.Fatalf("Can't recognize: %v", err) } if len(faces) != 10 { log.Fatalf("Wrong number of faces") } // Fill known samples. In the real world you would use a lot of images // for each person to get better classification results but in our // example we just get them from one big image. var samples []face.Descriptor var cats []int32 for i, f := range faces { samples = append(samples, f.Descriptor) // Each face is unique on that image so goes to its own category. cats = append(cats, int32(i)) } // Name the categories, i.e. people on the image. labels := []string{ "Sungyeon", "Yehana", "Roa", "Eunwoo", "Xiyeon", "Kyulkyung", "Nayoung", "Rena", "Kyla", "Yuha", } // Pass samples to the recognizer. rec.SetSamples(samples, cats) // Now let's try to classify some not yet known image. testImageNayoung := filepath.Join(imagesDir, "nayoung.jpg") nayoungFace, err := rec.RecognizeSingleFile(testImageNayoung) if err != nil { log.Fatalf("Can't recognize: %v", err) } if nayoungFace == nil { log.Fatalf("Not a single face on the image") } catID := rec.Classify(nayoungFace.Descriptor) if catID < 0 { log.Fatalf("Can't classify") } // Finally print the classified label. It should be "Nayoung". fmt.Println(labels[catID]) }
正确答案
将使用face.rectangle点来捕捉每个面
package main import ( "fmt" "log" "path/filepath" "github.com/Kagami/go-face" ) // Path to directory with models and test images. Here it's assumed it // points to the <https://github.com/Kagami/go-face-testdata> clone. const dataDir = "testdata" var ( modelsDir = filepath.Join(dataDir, "models") imagesDir = filepath.Join(dataDir, "images") ) // This example shows the basic usage of the package: create an // recognizer, recognize faces, classify them using few known ones. func main() { // Init the recognizer. rec, err := face.NewRecognizer(modelsDir) if err != nil { log.Fatalf("Can't init face recognizer: %v", err) } // Free the resources when you're finished. defer rec.Close() // Test image with 10 faces. testImagePristin := filepath.Join(imagesDir, "pristin.jpg") // Recognize faces on that image. faces, err := rec.RecognizeFile(testImagePristin) if err != nil { log.Fatalf("Can't recognize: %v", err) } if len(faces) != 10 { log.Fatalf("Wrong number of faces") } // Fill known samples. In the real world you would use a lot of images // for each person to get better classification results but in our // example we just get them from one big image. var samples []face.Descriptor var cats []int32 for i, f := range faces { // Croping each face and save as image for reference err := saveFace(f.Rectangle.Min.X, f.Rectangle.Min.Y, f.Rectangle.Max.X, f.Rectangle.Max.Y, int(i)) if err != nil { fmt.Println(err) } samples = append(samples, f.Descriptor) // Each face is unique on that image so goes to its own category. cats = append(cats, int32(i)) } // Name the categories, i.e. people on the image. labels := []string{ "Sungyeon", "Yehana", "Roa", "Eunwoo", "Xiyeon", "Kyulkyung", "Nayoung", "Rena", "Kyla", "Yuha", } // Pass samples to the recognizer. rec.SetSamples(samples, cats) // Now let's try to classify some not yet known image. testImageNayoung := filepath.Join(imagesDir, "nayoung.jpg") nayoungFace, err := rec.RecognizeSingleFile(testImageNayoung) if err != nil { log.Fatalf("Can't recognize: %v", err) } if nayoungFace == nil { log.Fatalf("Not a single face on the image") } catID := rec.Classify(nayoungFace.Descriptor) if catID < 0 { log.Fatalf("Can't classify") } // Finally print the classified label. It should be "Nayoung". fmt.Println(labels[catID]) } func saveFace(top int, bottom int, right int, left int, fid int) error { testImagePristin := filepath.Join(imagesDir, "pristin.jpg") img, err := readImage(testImagePristin) if err != nil { return err } img, err = cropImage(img, image.Rect(top, bottom, right, left)) if err != nil { return err } facePath := fmt.Sprintf("images/%d.png", fid) return writeImage(img, facePath) } // readImage reads a image file from disk. func readImage(name string) (image.Image, error) { testImagePristin := filepath.Join(imagesDir, "pristin.jpg") fd, err := os.Open(testImagePristin) if err != nil { return nil, err } defer fd.Close() // image.Decode requires that you import the right image package. We've // decode jpeg files then we would need to import "image/jpeg". img, _, err := image.Decode(fd) if err != nil { return nil, err } return img, nil } // cropImage takes an image and crops it to the specified rectangle. func cropImage(img image.Image, crop image.Rectangle) (image.Image, error) { type subImager interface { SubImage(r image.Rectangle) image.Image //Newfunc() int } // method called SubImage. If it does, then we can use SubImage to crop the // image. simg, ok := img.(subImager) if !ok { return nil, fmt.Errorf("image does not support cropping") } return simg.SubImage(crop), nil } // writeImage writes an Image back to the disk. func writeImage(img image.Image, name string) error { fd, err := os.Create(name) if err != nil { return err } defer fd.Close() return png.Encode(fd, img) }
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于Golang的相关知识,也可关注golang学习网公众号。
声明:本文转载于:stackoverflow 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
502 收藏
-
502 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
139 收藏
-
204 收藏
-
325 收藏
-
478 收藏
-
486 收藏
-
439 收藏
-
357 收藏
-
352 收藏
-
101 收藏
-
440 收藏
-
212 收藏
-
143 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 515次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 499次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习