Go 实现 Nginx 加权轮询算法的方法步骤
来源:脚本之家
时间:2023-01-19 09:56:03 101浏览 收藏
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个Golang开发实战,手把手教大家学习《Go 实现 Nginx 加权轮询算法的方法步骤》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
最近在看一些 getway 相关的资料,发现有关 Nginx 负载均衡的算法有点多,但是有点乱,所以整理下。。。如有不对地方请指出。
一,Nginx 负载均衡的轮询 (round-robin)
在说加权轮询之前我们先来简单的说一下轮询
1. nginx 中的配置
upstream cluster {
server 192.168.0.14;
server 192.168.0.15;
}
location / {
proxy_set_header X-Real-IP $remote_addr; //返回真实IP
proxy_pass http://cluster; //代理指向cluster
}
2. 简单介绍
轮询 作为负载均衡中较为基础的算法,他的实现不需要配置额外的参数。简单理解:配置文件中一共配置了 N 台服务器,轮询 算法会遍历服务的节点列表,并按照节点顺序每轮选择一台服务器处理请求,当所有节点遍历一遍后,重新开始
3. 特点
轮询 算法中我们不难看出,每台服务器处理请求的数量基本持平,按照请求时间逐一分配,因此只能适用于集群服务器性能相近的情况,平均分配让每台服务器承载量基本持平。但是如果集群服务器性能参差不齐,这样的算法会导致资源分配不合理,造成部分请求阻塞,部分服务器资源浪费。为了解决上述问题,我们将 轮询 算法升级了,引入了 加权轮询 算法,让集群中性能差异较大的服务器也能合理分配资源。达到资源尽量最大化合理利用
4. 实现 (这里使用golang模拟实现)
type RoundRobinBalance struct {
curIndex int
rss []string
}
/**
* @Author: yang
* @Description:添加服务
* @Date: 2021/4/7 15:36
*/
func (r *RoundRobinBalance) Add (params ...string) error{
if len(params) == 0 {
return errors.New("params len 1 at least")
}
addr := params[0]
r.rss = append(r.rss, addr)
return nil
}
/**
* @Author: yang
* @Description:轮询获取服务
* @Date: 2021/4/7 15:36
*/
func (r *RoundRobinBalance) Next () string {
if len(r.rss) == 0 {
return ""
}
lens := len(r.rss)
if r.curIndex >= lens {
r.curIndex = 0
}
curAdd := r.rss[r.curIndex ]
r.curIndex = (r.curIndex + 1) % lens
return curAdd
}
5. 测试
简单调用下方法看看结果
/**
* @Author: yang
* @Description:测试
* @Date: 2021/4/7 15:36
*/
func main(){
rb := new(RoundRobinBalance)
rb.Add("127.0.0.1:80")
rb.Add("127.0.0.1:81")
rb.Add("127.0.0.1:82")
rb.Add("127.0.0.1:83")
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
}
go run main.go
127.0.0.1:80
127.0.0.1:81
127.0.0.1:82
127.0.0.1:83
127.0.0.1:80
127.0.0.1:81
二,Nginx 负载均衡的加权轮询 (weighted-round-robin)
进入主题
1. nginx 配置
http {
upstream cluster {
server 192.168.1.2 weight=5;
server 192.168.1.3 weight=3;
server 192.168.1.4 weight=1;
}
location / {
proxy_set_header X-Real-IP $remote_addr; //返回真实IP
proxy_pass http://cluster; //代理指向cluster
}
2. 加权算法简介-特点
不同的服务器的配置,部署的应用数量,网络状况等都会导致服务器处理能力会不一样,所以简单的 轮询 算法将不再适用,而引入 了加权轮询 算法:根据服务器不同的处理能力,给每个服务器分配不同的权值,根据不同的权值将不同的服务器分配到对应的服务器上;
请求数量较大时,每个服务处理请求的数量之比会趋向于权重之比。
3. 算法说明
在 Nginx加权轮询算法 中,每个节点都有3个权重的变量
- Weight : 配置的权重,根据配置文件初始化每个服务器节点的权重
- currentWeight : 节点的当前权重,初始化时是配置的权重,随后会一直变更
- effectiveWeight : 有效的权重,初始值为 weight ,通讯过程中发现节点异常,则 -1 ,之后再次选择本节点,调用成功一次则 +1 ,直到恢复到 weight。这个参数可以用于做降权。或者说是你的设置的权限修正。。
Nginx加权轮询算法 的逻辑实现
- 轮询所有节点,计算当前状态下所有的节点的 effectiveWeight 之和 作为 totalWeight;
- 更新每个节点的 currentWeight , currentWeight = currentWeight + effectiveWeight; 选出所有节点 currentWeight 中最大的一个节点作为选中节点;
- 选择中的节点再次更新 currentWeight, currentWeight = currentWeight - totalWeight;
4. 简单举例
注意:实现中不考虑健康检查,即所有的节点都是100%可用的,所以 effectiveWeight 等于 weight
假设:现在有3个节点 {A, B, C} 分别权重为:{4, 2, 1};请求7次
| 第N次请求 | 请求前 currentWeight | 选中的节点 | 请求后 currentWeight |
|---|---|---|---|
| 1 | [serverA=4, serverB=2, serverC=1] | serverA | [serverA=1, serverB=4, serverC=2] |
| 2 | [serverA=1, serverB=4, serverC=2] | serverB | [serverA=5, serverB=-1, serverC=3] |
| 3 | [serverA=5, serverB=-1, serverC=3] | serverA | [serverA=2, serverB=1, serverC=4] |
| 4 | [serverA=2, serverB=1, serverC=4] | serverA | [serverA=-1, serverB=3, serverC=5] |
| 5 | [serverA=-1, serverB=3, serverC=5] | serverC | [serverA=3, serverB=5, serverC=-1] |
| 6 | [serverA=3, serverB=5, serverC=-1] | serverA | [serverA=0, serverB=7, serverC=0] |
| 7 | [serverA=0, serverB=7, serverC=0] | serverB | [serverA=4, serverB=2, serverC=1] |
totaoWeight = 4 + 2 + 1 = 7
第一次请求: serverA = 4 + 4 = 8 , serverB = 2 + 2 = 4, serverC = 1 + 1 = 2; 最大的是 serverA ; 所以选择 serverA ;然后serverA = 8 - 7 = 1;最后得出:serverA=1, serverB=4, serverC=2
第二次请求: serverA = 1 + 4 = 5; serverB = 4 + 2 = 6 ; serverC = 2 + 1 = 3;最大的是 serverB ; 所以选择 serverB ; 然后 serverB = 6 - 7 = -1 ;最后得出: serverA=5, serverB=-1, serverC=3
以此类推。。。
5. 代码实现
以golang实现下上面的逻辑:
type WeightRoundRobinBalance struct {
curIndex int
rss []*WeightNode
}
type WeightNode struct {
weight int // 配置的权重,即在配置文件或初始化时约定好的每个节点的权重
currentWeight int //节点当前权重,会一直变化
effectiveWeight int //有效权重,初始值为weight, 通讯过程中发现节点异常,则-1 ,之后再次选取本节点,调用成功一次则+1,直达恢复到weight 。 用于健康检查,处理异常节点,降低其权重。
addr string // 服务器addr
}
/**
* @Author: yang
* @Description:添加服务
* @Date: 2021/4/7 15:36
*/
func (r *WeightRoundRobinBalance) Add (params ...string) error{
if len(params) != 2{
return errors.New("params len need 2")
}
// @Todo 获取值
addr := params[0]
parInt, err := strconv.ParseInt(params[1], 10, 64)
if err != nil {
return err
}
node := &WeightNode{
weight: int(parInt),
effectiveWeight: int(parInt), // 初始化時有效权重 = 配置权重值
currentWeight: int(parInt), // 初始化時当前权重 = 配置权重值
addr: addr,
}
r.rss = append(r.rss, node)
return nil
}
/**
* @Author: yang
* @Description:轮询获取服务
* @Date: 2021/4/7 15:36
*/
func (r *WeightRoundRobinBalance) Next () string {
// @Todo 没有服务
if len(r.rss) == 0 {
return ""
}
totalWeight := 0
var maxWeightNode *WeightNode
for key , node := range r.rss {
// @Todo 计算当前状态下所有节点的effectiveWeight之和totalWeight
totalWeight += node.effectiveWeight
// @Todo 计算currentWeight
node.currentWeight += node.effectiveWeight
// @Todo 寻找权重最大的
if maxWeightNode == nil || maxWeightNode.currentWeight
<h3>6. 测试验证</h3>
<pre class="brush:plain;">
/**
* @Author: yang
* @Description:测试
* @Date: 2021/4/7 15:36
*/
func main(){
rb := new(WeightRoundRobinBalance)
rb.Add("127.0.0.1:80", "4")
rb.Add("127.0.0.1:81", "2")
rb.Add("127.0.0.1:82", "1")
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
fmt.Println(rb.Next())
}
执行下看下结果:
run main.go
127.0.0.1:80
127.0.0.1:81
127.0.0.1:80
127.0.0.1:80
127.0.0.1:82
127.0.0.1:80
127.0.0.1:81
以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于Golang的相关知识,也可关注golang学习网公众号。
-
131 收藏
-
262 收藏
-
124 收藏
-
149 收藏
-
478 收藏
-
140 收藏
-
147 收藏
-
378 收藏
-
255 收藏
-
287 收藏
-
393 收藏
-
310 收藏
-
110 收藏
-
412 收藏
-
423 收藏
-
274 收藏
-
379 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习