PyTorch 该怎么学?太简单了
来源:51CTO.COM
时间:2024-04-21 17:03:39 351浏览 收藏
有志者,事竟成!如果你在学习科技周边,那么本文《PyTorch 该怎么学?太简单了》,就很适合你!文章讲解的知识点主要包括,若是你对本文感兴趣,或者是想搞懂其中某个知识点,就请你继续往下看吧~
很多朋友都向我咨询如何学习PyTorch,实践证明,初学者只需掌握少量概念和用法即可。让我们一起看看这个简明指南的总结!
构建Tensor
PyTorch 中的 Tensors 是多维数组,类似于 NumPy 的 ndarrays,但可以在 GPU 上运行:
import torch# Create a 2x3 tensortensor = torch.tensor([[1, 2, 3], [4, 5, 6]])print(tensor)
动态计算图
PyTorch 使用动态计算图,在执行操作时即时构建计算图,这为在运行时修改图形提供了灵活性:
# Define two tensorsa = torch.tensor([2.], requires_grad=True)b = torch.tensor([3.], requires_grad=True)# Compute resultc = a * bc.backward()# Gradientsprint(a.grad)# Gradient w.r.t a
GPU加速
PyTorch 允许在 CPU 和 GPU 之间轻松切换。使用 .to(device) 即可:
device = "cuda" if torch.cuda.is_available() else "cpu"tensor = tensor.to(device)
Autograd:自动微分
PyTorch 的 autograd 为tensor的所有运算提供了自动微分功能,设置 requires_grad=True可以跟踪计算:
x = torch.tensor([2.], requires_grad=True)y = x**2y.backward()print(x.grad)# Gradient of y w.r.t x
模块化神经网络
PyTorch 提供了 nn.Module 类来定义神经网络架构,通过子类化创建自定义层:
import torch.nn as nnclass SimpleNN(nn.Module):def __init__(self):super().__init__()self.fc = nn.Linear(1, 1)def forward(self, x):return self.fc(x)
预定义层和损失函数
PyTorch 在 nn 模块中提供了各种预定义层、损失函数和优化算法:
loss_fn = nn.CrossEntropyLoss()optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
Dataset 与 DataLoader
为实现高效的数据处理和批处理,PyTorch 提供了 Dataset 和 DataLoader 类:
from torch.utils.data import Dataset, DataLoaderclass CustomDataset(Dataset):# ... (methods to define)data_loader = DataLoader(dataset, batch_size=32, shuffle=True)
模型训练(循环)
通常PyTorch 的训练遵循以下模式:前向传播、计算损失、反向传递和参数更新:
for epoch in range(epochs):for data, target in data_loader:optimizer.zero_grad()output = model(data)loss = loss_fn(output, target)loss.backward()optimizer.step()
模型序列化
使用 torch.save() 和 torch.load() 保存并加载模型:
# Savetorch.save(model.state_dict(), 'model_weights.pth')# Loadmodel.load_state_dict(torch.load('model_weights.pth'))
JIT
PyTorch 默认以eager模式运行,但也为模型提供即时(JIT)编译:
scripted_model = torch.jit.script(model)scripted_model.save("model_jit.pt")
文中关于PyTorch的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《PyTorch 该怎么学?太简单了》文章吧,也可关注golang学习网公众号了解相关技术文章。
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
250 收藏
-
475 收藏
-
440 收藏
-
142 收藏
-
165 收藏
-
285 收藏
-
369 收藏
-
240 收藏
-
192 收藏
-
284 收藏
-
438 收藏
-
299 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习