具身智能体三维感知新链条,TeleAI &上海AI Lab提出多视角融合具身模型「SAM-E」
来源:机器之心
时间:2024-05-24 13:24:21 225浏览 收藏
编程并不是一个机械性的工作,而是需要有思考,有创新的工作,语法是固定的,但解决问题的思路则是依靠人的思维,这就需要我们坚持学习和更新自己的知识。今天golang学习网就整理分享《具身智能体三维感知新链条,TeleAI &上海AI Lab提出多视角融合具身模型「SAM-E」》,文章讲解的知识点主要包括,如果你对科技周边方面的知识点感兴趣,就不要错过golang学习网,在这可以对大家的知识积累有所帮助,助力开发能力的提升。

AIxiv专栏是本站发布学术、技术内容的栏目。过去数年,本站AIxiv专栏接收报道了2000多篇内容,覆盖全球各大高校与企业的顶级实验室,有效促进了学术交流与传播。如果您有优秀的工作想要分享,欢迎投稿或者联系报道。投稿邮箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com


论文名称:SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation 论文链接: https://sam-embodied.github.io/static/SAM-E.pdf 项目地址: https://sam-embodied.github.io/
利用SAM的提示驱动结构,构建了一个强大的基座模型,在任务语言指令下拥有出色的泛化性能。通过LoRA微调技术,将模型适配到具身任务中,进一步提升了其性能。 采用时序动作建模技术,捕捉动作序列中的时序信息,更好地理解任务的动态变化,并及时调整机器人的策略和执行方式,使机器人保持较高的执行效率。
在具身场景中任务「提示」以自然语言的形式呈现,作为任务描述指令,视觉编码器发挥其可提示的感知能力,提取与任务相关的特征。策略网络则充当解码器的角色,基于融合的视觉嵌入和语言指令输出动作。
在训练阶段,SAM-E 使用 LoRA 进行高效微调,大大减少了训练参数,使视觉基础模型能够快速适应于具身任务。
在多任务场景下,SAM-E模型显著提高了任务成功率。 在面对少量样本迁移至新任务的情况下,SAM-E凭借强大的泛化性能和高效的执行效率,有效提升新任务的表现。


好了,本文到此结束,带大家了解了《具身智能体三维感知新链条,TeleAI &上海AI Lab提出多视角融合具身模型「SAM-E」》,希望本文对你有所帮助!关注golang学习网公众号,给大家分享更多科技周边知识!
声明:本文转载于:机器之心 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
最新阅读
更多>
-
103 收藏
-
234 收藏
-
465 收藏
-
100 收藏
-
307 收藏
-
280 收藏
-
121 收藏
-
194 收藏
-
417 收藏
-
430 收藏
-
315 收藏
-
319 收藏
课程推荐
更多>
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习