掌握 Go 的并发性:使用 Goroutines 和 Channel 增强您的代码
来源:dev.to
时间:2024-12-06 10:15:48 169浏览 收藏
哈喽!今天心血来潮给大家带来了《掌握 Go 的并发性:使用 Goroutines 和 Channel 增强您的代码》,想必大家应该对Golang都不陌生吧,那么阅读本文就都不会很困难,以下内容主要涉及到,若是你正在学习Golang,千万别错过这篇文章~希望能帮助到你!

goroutines 和 channels 是 go 并发模型的支柱。它们不仅仅是简单的工具;它们是强大的结构,可以让我们构建复杂的高性能系统。
让我们从 goroutine 开始。它们就像轻量级线程,但效率更高。我们可以毫不费力地繁殖数千个。这是一个基本示例:
func main() {
go func() {
fmt.println("hello from a goroutine!")
}()
time.sleep(time.second)
}
但这只是表面现象。当我们将 goroutine 与通道结合起来时,真正的魔力就会发生。
通道就像连接 goroutine 的管道。它们让我们可以在程序的并发部分之间发送和接收值。这是一个简单的例子:
func main() {
ch := make(chan string)
go func() {
ch <- "hello, channel!"
}()
msg := <-ch
fmt.println(msg)
}
现在,让我们深入研究一些高级模式。我最喜欢的之一是工人池。它是一组处理共享队列中的任务的 goroutine。以下是我们如何实现它:
func worker(id int, jobs <-chan int, results chan<- int) {
for j := range jobs {
fmt.printf("worker %d processing job %d\n", id, j)
time.sleep(time.second)
results <- j * 2
}
}
func main() {
jobs := make(chan int, 100)
results := make(chan int, 100)
for w := 1; w <= 3; w++ {
go worker(w, jobs, results)
}
for j := 1; j <= 9; j++ {
jobs <- j
}
close(jobs)
for a := 1; a <= 9; a++ {
<-results
}
}
此模式非常适合在多个处理器之间分配工作。它具有可扩展性且高效。
另一个强大的模式是发布-订阅系统。它非常适合向多个接收者广播消息。这是一个基本的实现:
type subscription struct {
ch chan interface{}
}
type pubsub struct {
mu sync.rwmutex
subs map[string][]subscription
}
func (ps *pubsub) subscribe(topic string) subscription {
ps.mu.lock()
defer ps.mu.unlock()
sub := subscription{ch: make(chan interface{}, 1)}
ps.subs[topic] = append(ps.subs[topic], sub)
return sub
}
func (ps *pubsub) publish(topic string, msg interface{}) {
ps.mu.rlock()
defer ps.mu.runlock()
for _, sub := range ps.subs[topic] {
select {
case sub.ch <- msg:
default:
}
}
}
该系统允许多个 goroutine 异步订阅主题并接收消息。
现在,我们来谈谈 select 语句。它们就像通道的开关,让我们可以处理多个通道的操作。我们甚至可以添加超时:
select {
case msg1 := <-ch1:
fmt.println("received", msg1)
case msg2 := <-ch2:
fmt.println("received", msg2)
case <-time.after(time.second):
fmt.println("timed out")
}
此模式对于在不阻塞的情况下处理多个并发操作至关重要。
信号量是另一个重要的概念。我们可以使用缓冲通道来实现它们:
type semaphore chan struct{}
func (s semaphore) acquire() {
s <- struct{}{}
}
func (s semaphore) release() {
<-s
}
func main() {
sem := make(semaphore, 3)
for i := 0; i < 5; i++ {
go func(id int) {
sem.acquire()
defer sem.release()
fmt.printf("worker %d is working\n", id)
time.sleep(time.second)
}(i)
}
time.sleep(3 * time.second)
}
此模式允许我们限制对资源的并发访问。
让我们继续正常关闭。这对于长期运行的服务至关重要。这是我经常使用的模式:
func main() {
stop := make(chan struct{})
go func() {
sigint := make(chan os.signal, 1)
signal.notify(sigint, os.interrupt)
<-sigint
close(stop)
}()
for {
select {
case <-stop:
fmt.println("shutting down...")
return
default:
// do work
}
}
}
这确保我们的程序在收到中断信号时可以干净地关闭。
背压是并发系统中的另一个重要概念。这是关于当生产者超过消费者时管理数据流。这是一个使用缓冲通道的简单示例:
func producer(ch chan<- int) {
for i := 0; ; i++ {
ch <- i
}
}
func consumer(ch <-chan int) {
for v := range ch {
fmt.println(v)
time.sleep(time.second)
}
}
func main() {
ch := make(chan int, 10)
go producer(ch)
consumer(ch)
}
通道中的缓冲区起到减震器的作用,即使消费者暂时缓慢,生产者也可以继续。
现在,我们来谈谈 go 运行时。它负责将 goroutine 调度到操作系统线程上。我们可以通过 gomaxprocs 环境变量来影响这一点,但通常情况下,默认值是最好的。
我们还可以使用runtime.numgoroutine()来查看有多少个goroutine正在运行:
fmt.println(runtime.numgoroutine())
这对于调试和监控很有用。
优化并发代码是一门艺术。一项关键原则是让 goroutine 保持短暂的生命周期。长时间运行的 goroutine 会占用资源。相反,使用工作池来执行长时间运行的任务。
另一个提示:当您知道要发送的值的数量时,请使用缓冲通道。他们可以通过减少同步来提高性能。
让我们用一个复杂的示例来结束:分布式任务处理器。这结合了我们讨论过的许多模式:
type Task struct {
ID int
Data string
}
type Result struct {
TaskID int
Output string
}
func worker(tasks <-chan Task, results chan<- Result) {
for task := range tasks {
// Simulate work
time.Sleep(time.Duration(rand.Intn(1000)) * time.Millisecond)
results <- Result{TaskID: task.ID, Output: "Processed: " + task.Data}
}
}
func main() {
tasks := make(chan Task, 100)
results := make(chan Result, 100)
// Start workers
for w := 1; w <= 3; w++ {
go worker(tasks, results)
}
// Send tasks
go func() {
for i := 1; i <= 10; i++ {
tasks <- Task{ID: i, Data: fmt.Sprintf("Task %d", i)}
}
close(tasks)
}()
// Collect results
for a := 1; a <= 10; a++ {
result := <-results
fmt.Printf("Result: %+v\n", result)
}
}
该系统将任务分配给多个工作人员,并发处理它们,并收集结果。
总之,go 的并发原语是强大的工具。它们让我们相对轻松地构建复杂的高性能系统。但权力越大,责任也越大。深入理解这些模式对于避免死锁和竞争条件等常见陷阱至关重要。
请记住,并发并不总是答案。有时,简单的顺序代码更清晰、更快。始终分析您的代码以确保并发性确实提高了性能。
最后,继续学习。 go 社区正在不断开发新的模式和最佳实践。保持好奇心,进行实验并分享您的发现。这就是我们作为开发者的成长方式。
我们的创作
一定要看看我们的创作:
投资者中心 | 智能生活 | 时代与回响 | 令人费解的谜团 | 印度教 | 精英开发 | js学校
我们在媒体上
科技考拉洞察 | 时代与回响世界 | 投资者中央媒体 | 令人费解的谜团 | 科学与时代媒介 | 现代印度教
终于介绍完啦!小伙伴们,这篇关于《掌握 Go 的并发性:使用 Goroutines 和 Channel 增强您的代码》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布Golang相关知识,快来关注吧!
-
505 收藏
-
503 收藏
-
502 收藏
-
502 收藏
-
502 收藏
-
246 收藏
-
413 收藏
-
199 收藏
-
310 收藏
-
157 收藏
-
471 收藏
-
375 收藏
-
110 收藏
-
463 收藏
-
272 收藏
-
131 收藏
-
404 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 543次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 516次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 500次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 485次学习