登录
首页 >  文章 >  python教程

快速而肮脏的文档分析:在 Python 中结合 GOT-OCR 和 LLama

时间:2025-01-12 09:00:05 317浏览 收藏

在文章实战开发的过程中,我们经常会遇到一些这样那样的问题,然后要卡好半天,等问题解决了才发现原来一些细节知识点还是没有掌握好。今天golang学习网就整理分享《快速而肮脏的文档分析:在 Python 中结合 GOT-OCR 和 LLama》,聊聊,希望可以帮助到正在努力赚钱的你。

让我们探索一种结合OCR和LLM技术分析图像的方法。虽然这不是专家级方案,但它源于实际应用中的类似方法,更像是一个便捷的周末项目,而非生产就绪代码。让我们开始吧!

目标:

构建一个简单的管道,用于处理图像(或PDF),利用OCR提取文本,再用LLM分析文本以获取有价值的元数据。这对于文档自动分类、来信分析或智能文档管理系统非常有用。我们将使用一些流行的开源工具,简化流程。

前提:

本文假设您已熟悉Hugging Face Transformers库。如不熟悉,请参考Hugging Face Transformers快速入门

所需库:

我们将使用torchtransformerspymupdfrich库。rich用于提升控制台输出的可读性。

{
  "tags": ["Hugging Face", "AI", "machine learning", "models", "datasets"],
  "language": "en",
  "confidentiality": "public",
  "priority": "normal",
  "category": "technology",
  "summary": "This text describes Hugging Face, a platform for AI models and datasets."
}

总结:

我们构建了一个简单的管道,可以处理PDF,提取文本,并使用LLM进行分析。 这只是一个起点,可以根据实际需求进行扩展,例如添加更完善的错误处理、多页面支持,或尝试不同的LLM模型。 记住,这只是众多方法中的一种,选择最适合您特定用例的方法至关重要。

请注意,代码中部分内容需要根据got-ocr2_0的具体API进行调整。 此外,提示工程的优化可以显著提升LLM的输出质量。

今天关于《快速而肮脏的文档分析:在 Python 中结合 GOT-OCR 和 LLama》的内容介绍就到此结束,如果有什么疑问或者建议,可以在golang学习网公众号下多多回复交流;文中若有不正之处,也希望回复留言以告知!

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>