登录
首页 >  科技周边 >  人工智能

AI赋能传统力场:字节跳动开发高精度通用小分子力场ByteFF

时间:2025-01-16 19:36:40 384浏览 收藏

本篇文章给大家分享《AI赋能传统力场:字节跳动开发高精度通用小分子力场ByteFF》,覆盖了科技周边的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。

图片

字节跳动推出全新小分子力场ByteFF:兼顾精度与效率,覆盖广阔化学空间

编辑 | ScienceAI

小分子力场在药物发现领域至关重要,是计算机辅助药物设计的核心工具。一个覆盖范围广、精度高的小分子力场,将为药物研发提供坚实基础。

现有基于机器学习的力场(MLFF),例如ANI-2x和MACE-OFF23,虽然能提供精准的分子势能面预测,但却面临数据需求量巨大、计算速度慢以及外推能力不足等挑战,限制了其在药物研发中的实际应用。

Espaloma等一系列研究尝试在保留传统力场势函数形式的基础上,利用图神经网络(GNN)预测传统力场的参数,在精度和效率之间取得平衡,为传统力场的发展指明了新方向。

基于此,字节跳动研究团队开发了ByteFF力场。该力场采用符合物理约束的模型结构,构建了涵盖广泛化学空间的大规模数据集,并设计了相应的训练方案。测试结果表明,ByteFF在结构优化、分子势能面预测等多个方面均达到业界领先水平。

相关研究成果已发表在《Chemical Science》期刊上,论文标题为“Data-Driven Parametrization of Molecular Mechanics Force Fields for Expansive Chemical Space Coverage”。

论文链接:https://pubs.rsc.org/en/content/articlehtml/2025/sc/d4sc06640e

研究背景

在虚拟筛选、分子对接和自由能预测等计算方法中,小分子力场扮演着关键角色。随着计算机辅助药物设计(CADD)和有机合成技术的进步,药物研发探索的化学空间不断扩大,迫切需要一种能够在广阔化学空间内提供高精度预测的小分子力场。

近年来,量子化学和机器学习技术为传统力场的发展带来了新的机遇。虽然备受关注的MLFF能够提供高精度预测,但其模型复杂性导致训练数据需求量大、计算速度慢等问题,难以兼顾计算效率和化学空间覆盖范围。

2022年,Espaloma力场提出了一种兼顾精度和效率的新方法,即保留传统力场的势函数形式,并使用GNN预测力场参数,取代传统的查表方法。这种数据驱动的参数化方法在提高传统力场精度的同时,保持了计算效率。

在此基础上,提升力场精度和化学空间覆盖率,需要更精巧的模型结构设计和训练策略。

模型结构与训练策略

ByteFF模型结构分为特征提取层(Featurization)、图神经网络层(GNN)和输出层(Output)三部分。

特征提取层将原子和化学键的化学特征转换为向量表示。GNN层采用EGT结构进行信息传递,充分利用原子和键的特征,获得每个原子和键的化学环境表示。输出层根据化学环境预测力场参数。

ByteFF模型结构的设计保证了参数预测结果符合物理约束,例如相同化学环境的结构具有相同的结构参数预测,原子部分电荷之和等于分子的总电荷等。

在训练方面,研究团队构建了包含240万个不同分子碎片的优化数据集和320万个不同二面角的扭转数据集。基于这些数据集,研究人员设计了针对性的Hessian损失函数,能够对批量数据进行端到端训练。

由于传统力场形式的限制,难以完美拟合量子化学计算的势能面,研究人员在扭转数据集上采用了迭代的“结构优化-训练”策略,以确保ByteFF在二面角(关键自由度)上提供准确的势能面预测。

此外,研究团队还采用了预训练、训练和微调的多阶段训练流程,以达到最佳训练效果。

性能评估

在结构优化方面,ByteFF显著优于业界领先的OPLS4+ffbuilder(标记为“OPLS4 cst”)。

图片

ByteFF能够准确预测小分子(包括环状和非环状分子)的二面角势能面。

图片

更多结果请参考原文。

总结与展望

ByteFF力场凭借其先进的网络结构设计、充足的训练数据和匹配的训练方案,在结构优化和分子势能面预测等方面取得了显著成果。

ByteFF继承了GAFF2的非键参数,保证了与Amber力场的兼容性,但其非键相互作用方面仍有提升空间,这将是未来的研究重点。

目前,ByteFF免费API测试正在进行中,如有需求,请联系论文通讯作者并注明单位和用途。欢迎同行试用并提供反馈。

以上就是本文的全部内容了,是否有顺利帮助你解决问题?若是能给你带来学习上的帮助,请大家多多支持golang学习网!更多关于科技周边的相关知识,也可关注golang学习网公众号。

相关阅读
更多>
最新阅读
更多>
课程推荐
更多>