【转载】为什么Mysql的常用引擎都默认使用B+树作为索引?
来源:SegmentFault
时间:2023-01-12 13:49:13 140浏览 收藏
知识点掌握了,还需要不断练习才能熟练运用。下面golang学习网给大家带来一个数据库开发实战,手把手教大家学习《【转载】为什么Mysql的常用引擎都默认使用B+树作为索引?》,在实现功能的过程中也带大家重新温习相关知识点,温故而知新,回头看看说不定又有不一样的感悟!
一、前言
为了讲清楚这个问题,阿粉先带大家了解一下什么是索引。
我记得刚刚学习数据库的时候,老师喜欢用书本的目录来类比数据库的索引,并告诉我们索引能够像目录一样,让我们更快地找到想要找到的数据。
如果是第一次接触索引,这个比喻能够让我们有一个直观的印象。但是当深入去学习索引的时候,我们不能继续持有索引即目录的思想,我们要跳出来去思考索引的本质是什么。
二、索引的本质
在没有索引的情况下,我们查找数据只能按照从头到尾的顺序逐行查找,每查找一行数据,意味着我们要到到磁盘相应的位置去读取一条数据。
如果把查询一条数据分为到磁盘中查询和比对查询条件两步的话,到磁盘中查询的时间会远远大于比对查询条件的时间,这意味着在一次查询中,磁盘io占用了大部分的时间。更进一步地说,一次查询的效率取绝于磁盘io的次数,如果我们能够在一次查询中尽可能地降低磁盘io的次数,那么我们就能加快查询的速度。
在知道了减少磁盘io能加快查询速度后,我们就要聚焦于如何减少磁盘io。如果按照原表逐行查询的话,n条数据就要查询n次,也就是O(N)的时间复杂度,为了减少磁盘io的次数,我们必须用一种查询时间复杂度更低的数据结构来保存数据。
这种查询时间复杂度低的数据结构,我们称之为索引。所以通俗来说,索引其实就是某种数据结构,能充当索引的数据结构是多种多样的。
三、索引的选择
既然索引是一种便于查询的数据结构,如果大家对数据结构有一定了解的话,大概率会首选树型结构。毕竟树型结构普遍有着O(logN)的查询时间复杂度,而且插入删除数据的性能也比较平均。(可能你会说数组,哈希表的查询速度也很高啊,这个后面也会分析)
虽然我们都已经知道Mysql中最常用的引擎像InnoDB和MyISAM,最终都选择了B+树作为索引,但是这里我还是打算从最常见的二叉树开始讲起,推导一下为什么最终选择了B+树作为索引,并比较一下几种树型结构在充当索引时的优劣。
二叉树
最普通的二叉树的问题在于他不能保证O(logN)的查询时间复杂度,我们看下面的图:
由于插入的元素逐渐增大,元素始终在右边进行插入,好好的一棵二叉树最终变成了一条“链表”。在这种极端的情况下,二叉树的查询时间复杂度不再是O(logN),而是退化为O(N),这样显然不符合索引的要求。
平衡二叉树(红黑树)
像红黑树这样的平衡二叉树,无论如何插入元素,他都可以通过一些旋转的方法调整树的高度,使得整棵树的查询效率维持在O(logN),如下图所示:
这么来说他已经符合了成为索引的必备条件,但是最终没有选择他作为索引说明还有不足的地方。仔细看看可以发现平衡二叉树的每个节点只有两个孩子节点,如果一张表的数据量特别大,整棵树的高度也会随之上升。一个千万级别的表如果用平衡二叉树作为索引的话,树高将会达到二十多层。这也就意味着做一次查询需要二十多次磁盘io,这是一个不小的开销。
那么有没有能在大数据量的情况下,还能保持一个较小树高的树型结构呢?
B树和B+树
答案就是B树。上面我们说到了平衡二叉树的瓶颈在于一个节点只有两个孩子节点,而B树一个节点可以存放N个孩子节点,这就完美解决了树高的问题,我们可以把B树称为平衡多叉树,B树作为索引如下图所示:
图片来源网络
但是以B树的结构作为索引仍有可以优化的地方,我们先看看最终的B+树,再仔细分析B+树在B树的基础上作了哪些改进,为什么B+树最终能够胜任索引的工作:
图片来源网络
从图片中可以看到B+树同样是一棵多叉平衡树,和B树一样很好地解决了树高的问题。
改进点一:
但仔细看可以发现,B树的节点中既存储索引,也存储表对应的数据;而B+树的非叶子节点是不存储数据的,只存储索引,数据全部存储在叶子节点上。
为什么要做这样的改进?我们做一次算术就知道了。
假设树高为2,主键ID为bigint类型,长度为8字节,节点指针为6字节,一行数据记录的大小为1k,一次io操作能获得一页16k的数据。
在索引为B+树的情况下,根节点能存储:16k / (6 + 8) = 1170 条索引指针;到了第一层,一共能指向 1170 * 1170 = 1368900 条索引指针;到了最底一层叶子节点,一个节点能存储16k / 1k = 16 条记录,一共能存储 1170 * 1170 * 16 = 21902400 条记录
在B树的情况下,由于非叶子节点使用了大量空间存储数据,存放的索引指针肯定就少,最终整棵树如果想要存储和B+树一样多的数据就必须要增加树高,这样一来就增加了磁盘io,所以说B+树作为索引的性能比B树高。
改进点二:
叶子节点之间使用指针连接,提高区间访问效率。如果我们要进行范围查询,可以轻松通过B+树叶子节点之间的指针进行遍历,减少了不必要的磁盘io。
总结
看到这里,相信大家对为什么Mysql的常用引擎都默认使用B+树作为索引已经有了初步的认知。我们只要牢记一点:索引是为了减少磁盘io提高查询性能而存在的。
最后回应一下为什么不常用哈希表和数组作为索引
哈希表虽然单一个值的查询效率很高,但是撑不住范围查询,哪个公司的业务还没个范围查询呢?
而数组虽然查询的效率高,但是增加和删除的效率低,由于记录在增加和删除的时候索引也得跟着维护,这会导致大数据量的情况下,增加或删除一条记录效率较低。
文中关于mysql的知识介绍,希望对你的学习有所帮助!若是受益匪浅,那就动动鼠标收藏这篇《【转载】为什么Mysql的常用引擎都默认使用B+树作为索引?》文章吧,也可关注golang学习网公众号了解相关技术文章。
-
499 收藏
-
148 收藏
-
406 收藏
-
244 收藏
-
235 收藏
-
475 收藏
-
266 收藏
-
273 收藏
-
283 收藏
-
210 收藏
-
371 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习
-
- 受伤的秋天
- 很详细,mark,感谢老哥的这篇技术贴,我会继续支持!
- 2023-03-28 09:21:44
-
- 独特的红酒
- 这篇技术贴真及时,作者加油!
- 2023-03-02 22:45:49
-
- 大瓶可乐
- 这篇文章太及时了,太详细了,感谢大佬分享,已加入收藏夹了,关注老哥了!希望老哥能多写数据库相关的文章。
- 2023-02-18 17:23:18
-
- 幽默的芹菜
- 这篇技术文章真及时,细节满满,太给力了,码住,关注作者了!希望作者能多写数据库相关的文章。
- 2023-02-01 03:18:54
-
- 着急的帅哥
- 这篇文章真是及时雨啊,太细致了,很好,码住,关注老哥了!希望老哥能多写数据库相关的文章。
- 2023-01-31 08:00:38
-
- 高高的板栗
- 写的不错,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,看完之后很有帮助,总算是懂了,感谢师傅分享博文!
- 2023-01-29 13:00:17
-
- 清秀的香烟
- 这篇博文太及时了,太细致了,很棒,已收藏,关注老哥了!希望老哥能多写数据库相关的文章。
- 2023-01-27 04:00:27
-
- 虚幻的小伙
- 很棒,一直没懂这个问题,但其实工作中常常有遇到...不过今天到这,帮助很大,总算是懂了,感谢up主分享技术文章!
- 2023-01-25 18:30:09
-
- 洁净的小伙
- 这篇文章出现的刚刚好,很详细,受益颇多,码住,关注楼主了!希望楼主能多写数据库相关的文章。
- 2023-01-18 05:29:47
-
- 缓慢的乌冬面
- 太详细了,收藏了,感谢up主的这篇技术贴,我会继续支持!
- 2023-01-13 22:03:59