论文推荐:基于深度对抗学习的超声图像乳腺肿瘤分割与分类
来源:51CTO.COM
时间:2023-04-28 18:41:13 331浏览 收藏
来到golang学习网的大家,相信都是编程学习爱好者,希望在这里学习科技周边相关编程知识。下面本篇文章就来带大家聊聊《论文推荐:基于深度对抗学习的超声图像乳腺肿瘤分割与分类》,介绍一下,希望对大家的知识积累有所帮助,助力实战开发!
条件GAN (cGAN) + Atrous卷积(AC) +带权重块的通道注意力(CAW)。
该论文提出了一种基于深度对抗学习的超声图像乳腺肿瘤分割分类方法(cGAN+AC+CAW),论文虽然是2019年提出的,但是他提出了使用GAN进行分割的方法在当时来说却是一个非常新奇的想法,该论文基本上把所有当时能够整合的技术全部进行了集成,并且还取得了很好的效果,所以是非常值得我们一读的,此外论文还提出了具有典型对抗损失的SSIM和l1范数损失作为损失函数。
使用 cGAN+AC+CAW 进行语义分割
生成器G
生成器网络包含一个编码器部分:由七个卷积层(En1到En7)和一个解码器:七个反卷积层(Dn1到Dn7)组成。
在En3和En4之间插入一个atrous卷积块。膨胀率1、6和9,内核大小3×3,步长为2。
在En7和Dn1之间还有一个带通道加权(CAW)块的通道注意力层。
CAW块是通道注意模块(DAN)和通道加权块(SENet)的集合,它增加了生成器网络最高级别特征的表示能力。
鉴别器D
它是一个卷积层的序列。
鉴别器的输入是图像和标记肿瘤区域的二值掩模的拼接。
鉴别器的输出是一个10×10矩阵,其值从0.0(完全假的)到1.0(真实的)不等。
损失函数
生成器G的损失函数包括三个项:对抗性损失(二元交叉熵损失)、促进学习过程的l1 -范数和改善分割掩码边界形状的SSIM损失:
其中z是一个随机变量。鉴别器D的损失函数为:
使用随机森林进行分类任务
将每一张图像输入经过训练的生成网络,获得肿瘤边界,然后从该边界计算13个统计特征: fractal dimension, lacunarity, convex hull, convexity, circularity, area, perimeter, centroid, minor and major axis length, smoothness, Hu moments (6) and central moments (order 3 and below)
采用穷举特征选择(Exhaustive feature selection),算法来选择最优的特征集。EFS算法表明, fractal dimension, lacunarity, convex hull, centroid是最优的4个特征。
这些选择的特征被输入一个随机森林分类器,然后训练该分类器来区分良性和恶性肿瘤。
结果对比
分割
数据集包含图像中包含的150个恶性肿瘤和100个良性肿瘤。为了训练的模型,将数据集随机分为训练集(70%)、验证集(10%)和测试集(20%)。
该模型(cGAN+AC+CAW)在所有指标上都优于其他模型。其Dice和IoU得分分别为93.76%和88.82%。
论文模型的IoU和Dice与FCN、SegNet、ERFNet和U-Net等分割头的箱线图对比。
该模型对Dice系数的取值范围为88% ~ 94%,对IoU的取值范围为80% ~ 89%,而其他深度分割方法FCN、SegNet、ERFNet和U-Net的取值范围更大。
分割结果如上图所示,SegNet和ERFNet产生的结果最差,有大量的假阴性区域(红色),以及一些假阳性区域(绿色)。
而U-Net, DCGAN, cGAN提供了很好的分割,论文提出的模型提供了更精确的乳腺肿瘤边界分割。
分类
所提出的乳腺肿瘤分类方法优于[9],总准确率达85%。
终于介绍完啦!小伙伴们,这篇关于《论文推荐:基于深度对抗学习的超声图像乳腺肿瘤分割与分类》的介绍应该让你收获多多了吧!欢迎大家收藏或分享给更多需要学习的朋友吧~golang学习网公众号也会发布科技周边相关知识,快来关注吧!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
182 收藏
-
249 收藏
-
118 收藏
-
362 收藏
-
264 收藏
-
267 收藏
-
154 收藏
-
212 收藏
-
314 收藏
-
486 收藏
-
340 收藏
-
148 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习