使用MultiTrain在数据集上训练多个机器学习分类模型示例
来源:51CTO.COM
时间:2023-04-13 22:19:12 322浏览 收藏
大家好,我们又见面了啊~本文《使用MultiTrain在数据集上训练多个机器学习分类模型示例》的内容中将会涉及到等等。如果你正在学习科技周边相关知识,欢迎关注我,以后会给大家带来更多科技周边相关文章,希望我们能一起进步!下面就开始本文的正式内容~
现在,让我们用MultiTrain库训练一个数据集,看看它与传统的测试模型方法相比是如何工作的。
注意:训练结果可作为选择适合您特定情况的最佳模型的参考。为了使模型执行得更好,需要进行更多的超参数调优。
在本教程中,我们将使用手机价格分类数据集(https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification)处理一个分类问题
安装库
pip install MultiTrain
导入所需的Python库
要处理这个数据集,我们需要导入以下库
import warnings
import pandas as pd
import seaborn as sns
from MultiTrain import MultiClassifier
from numpy import mean,
arange from matplotlib import pyplot as plt
warning.filterwarnings('ignore')
导入机器学习数据集
现在,让我们也导入我们将使用的数据集
df = pd.read_csv(“train_phone.csv”)
检查数据集标签是否平衡
我们检查数据集中包含的标签,以确定它是是否平衡,这将帮助我们决定如何训练数据集。
在运行下面的代码时,您将发现数据集标签是均匀分布的。
# price_range is the column name for the labels
df["price_range"].value_counts()
模型训练
我们将跳过探索性数据分析,这里的重点是看看我们如何使用 MultiTrain 来实现它的目的。
下一步是将数据集划分为特征和标签。
features = df.drop('price_range', axis=1)
labels = df['price_range']
在定义了训练特征和标签之后,我们现在需要进一步将它们分为训练集和测试集。模型将使用训练集进行训练,并使用测试集对其性能进行评估。
然后必须在MultiTrain库中定义MultiClassifier对象。我们正在处理的数据集包括四个不同的标签,这使它成为一个多类问题。
通过定义随机状态参数,在数据集上训练的所有机器学习模型将产生一致的结果。设置“cores”为“-1”可以确保训练使用CPU中的所有内核来提高性能。
train = MultiClassifier(random_state=42,
imbalanced=False,
target_class='multiclass',
cores=-1)
# It's important to assign this method to a variable because it
# returns the training and test splits to be used in the fit method
returned_split = train.split(X=features,
y=labels,
randomState=42,
sizeOfTest=0.2)
fit = train.fit(X=features,
y=labels,
splitting=True,
split_data=returned_split,
show_train_score=True)
您也可以使用 KFold 拆分对数据集进行训练。
train = MultiClassifier(random_state=42,
imbalanced=False,
target_class='multiclass',
cores=-1)
# setting kf to True tells the fit method to use the KFold Split for # training.
fit = train.fit(X=features,
y=labels,
kf=True,
fold=5,
show_train_score=True)
您还可以将单个模型与scikit-learn实现进行比较,以查看它们是否产生类似的结果。
今天关于《使用MultiTrain在数据集上训练多个机器学习分类模型示例》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于Python,机器学习,数据集的内容请关注golang学习网公众号!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
352 收藏
-
212 收藏
-
285 收藏
-
364 收藏
-
292 收藏
-
501 收藏
-
169 收藏
-
333 收藏
-
443 收藏
-
196 收藏
-
347 收藏
-
265 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 508次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习