选择性风险可以提高AI的公平性和准确性
来源:51CTO.COM
时间:2023-04-30 16:53:54 483浏览 收藏
本篇文章给大家分享《选择性风险可以提高AI的公平性和准确性》,覆盖了科技周边的常见基础知识,其实一个语言的全部知识点一篇文章是不可能说完的,但希望通过这些问题,让读者对自己的掌握程度有一定的认识(B 数),从而弥补自己的不足,更好的掌握它。
麻省理工人工智能实验室的研究人员发表了一篇新论文,旨在谴责在某些场景下使用选择性回归,因为这种技术会降低数据集中代表性不足的群体模型的整体性能。
这些代表性不足的群体往往是女性和有色人种,这种对他们的忽视导致了一些关于人工智能种族主义和性别歧视的报道。在一个账户中,用于风险评估的人工智能错误地将黑人囚犯标记为白人囚犯的两倍。在另一项案例中,没有任何背景的男性照片被认定为医生和家庭主妇的比例高于女性。
通过选择性回归,人工智能模型可以对每个输入做出两个选择:预测或弃权。只有在对决策有信心的情况下,该模型才会做出预测,在几次测试中,通过排除无法正确评估的输入来提高模型的性能。
然而,当输入被删除时,它会放大数据集中已经存在的偏见。一旦AI模型被部署到现实生活中,这将导致代表性不足的群体进一步不准确,因为它无法像在开发过程中那样删除或拒绝代表性不足的群体。最终希望确保以明智的方式考虑跨组的错误率,而不是仅仅最小化模型的一些广泛的错误率。
麻省理工学院的研究人员还引入了一种新技术,旨在提高模型在每个子组中的模型性能。这种技术被称为单调选择性风险,一种模型没有弃权,而是包含种族和性别等敏感属性,而另一种则不包含。同时,两个模型都做出决策,没有敏感数据的模型被用作数据集中偏差的校准。
为这个特定问题提出正确的公平概念是一项挑战。但是通过执行这个标准,单调的选择风险,我们可以确保当减少覆盖范围时,模型性能实际上在所有子组中都变得更好。
当使用医疗保险数据集和犯罪数据集进行测试时,新技术能够降低代表不足的群体的错误率,同时不显著影响模型的整体性能。研究人员打算将这项技术应用到新的应用中,比如房价、学生平均学分绩点和贷款利率,看看它是否可以用于其他任务。
本篇关于《选择性风险可以提高AI的公平性和准确性》的介绍就到此结束啦,但是学无止境,想要了解学习更多关于科技周边的相关知识,请关注golang学习网公众号!
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
501 收藏
-
205 收藏
-
228 收藏
-
192 收藏
-
357 收藏
-
461 收藏
-
346 收藏
-
- 前端进阶之JavaScript设计模式
- 设计模式是开发人员在软件开发过程中面临一般问题时的解决方案,代表了最佳的实践。本课程的主打内容包括JS常见设计模式以及具体应用场景,打造一站式知识长龙服务,适合有JS基础的同学学习。
- 立即学习 542次学习
-
- GO语言核心编程课程
- 本课程采用真实案例,全面具体可落地,从理论到实践,一步一步将GO核心编程技术、编程思想、底层实现融会贯通,使学习者贴近时代脉搏,做IT互联网时代的弄潮儿。
- 立即学习 507次学习
-
- 简单聊聊mysql8与网络通信
- 如有问题加微信:Le-studyg;在课程中,我们将首先介绍MySQL8的新特性,包括性能优化、安全增强、新数据类型等,帮助学生快速熟悉MySQL8的最新功能。接着,我们将深入解析MySQL的网络通信机制,包括协议、连接管理、数据传输等,让
- 立即学习 497次学习
-
- JavaScript正则表达式基础与实战
- 在任何一门编程语言中,正则表达式,都是一项重要的知识,它提供了高效的字符串匹配与捕获机制,可以极大的简化程序设计。
- 立即学习 487次学习
-
- 从零制作响应式网站—Grid布局
- 本系列教程将展示从零制作一个假想的网络科技公司官网,分为导航,轮播,关于我们,成功案例,服务流程,团队介绍,数据部分,公司动态,底部信息等内容区块。网站整体采用CSSGrid布局,支持响应式,有流畅过渡和展现动画。
- 立即学习 484次学习