登录
首页 >  科技周边 >  人工智能

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

来源:51CTO.COM

时间:2023-05-13 11:37:00 329浏览 收藏

科技周边不知道大家是否熟悉?今天我将给大家介绍《OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开》,这篇文章主要会讲到等等知识点,如果你在看完本篇文章后,有更好的建议或者发现哪里有问题,希望大家都能积极评论指出,谢谢!希望我们能一起加油进步!

没想到,打开AI黑盒这件事,可能还要靠AI自己来实现了。

OpenAI的最新研究来了一波大胆尝试:

让GPT-4去解释GPT-2的行为模式。

结果显示,超过1000个神经元的解释得分在0.8以上——也就是说GPT-4能理解这些神经元。

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

要知道,“AI黑箱难题”长期以来是一个热议话题,尤其是大语言模型领域,人类对其内部工作原理的理解还非常有限,这种“不透明化”也进一步引发了人类对AI的诸多担忧。

目前推进AI可解释性研究的一个简单办法,就是逐个分析大模型中的神经元,手动检查以确定它们各自所代表的数据特征。

但对于规模已经达到百亿、千亿级别的大规模神经网络来说,工作量和工作难度就都涨了亿点点吧。

由此,OpenAI的研究人员想到,干嘛不让AI去自动化搞定这个大工程?

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

在这项最新的研究中,他们将GPT-4打造成了一个理解AI行为模式的工具,把GPT-2超过30万个神经单元都解释了一遍,并和实际情况比对进行评分。

最终生成的解释数据集和工具代码,已对外开源。

研究人员表示:未来,这种AI工具可能在改善LLM性能上发挥巨大作用,比如减少AI偏见和有害输出。

解释接近人类水平

具体来看,整个研究的步骤可以分为三步。

第一步,先给GPT-4一段文本,并展示GPT-2在理解这段文本时激活的神经元情况。

然后让GPT-4来解释,这段文本中神经元的激活情况。

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

比如示例中给出了一段漫威复联的文本,GPT-4分析的激活神经元为:

电影、角色和娱乐

第二步,让GPT-4开始模拟,这些被解释的神经元接下来会做什么。

GPT-4给出了一段内容。

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

第三步,让GPT-2真实的神经元激活来生成结果,然后和GPT-4模拟的结果进行比对,研究人员会对此打分。

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

在博客给出的示例中,GPT-4的得分为0.34.

使用这个办法,研究人员让GPT-4解释了GPT-2一共307200个神经元。

OpenAI表示,使用这一基准,AI解释的分数能接近人类水平。

从总体结果来看,GPT-4在少数情况下的解释得分很高,在0.8分以上。

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

他们还发现,不同层神经元被激活的情况,更高层的会更抽象。

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

此外,团队还总结了如下几点结论:

  • 如果让GPT-4重复解释,它的得分能更高
  • 如果使用更强大的模型来解释,得分也会上升
  • 用不同的激活函数训练模型,能提高解释分数

总结来看就是,虽然GPT-4目前的表现一般,但是这个方法和思路的提升空间还有很大。

团队也强调,现在在GPT-2上的表现都不太好,如果换成更大、更复杂的模型,表现也会比较堪忧。

同时这种模式也能适用于联网的LLM,研究人员认为可以通过简单调整,来弄清楚神经元如何决策搜索内容和访问的网站。

此外他们还表示,在创建这个解释系统时并没有考虑商业化问题,理论上除了GPT-4,其他LLM也能实现类似效果。

接下来,他们打算解决研究中的这几个问题:

  • AI神经元行为十分复杂,但GPT-4给的解释非常简单,所以有些复杂行为还无法解释;
  • 希望最终自动找到并解释复杂的整个神经回路,神经元和注意力头一起工作;
  • 目前只解释了神经元的行为,但没解释行为背后的机制;
  • 整个过程算力消耗巨大。

网友:快进到AI创造AI

意料之中,这项研究马上在网络上引发热议。

大家的脑洞画风be like:“AI教人类理解AI。”

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

“AI教人类关掉AI中存在风险的神经元。”

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

还有人开始畅想,AI理解AI会快速发展为AI训练AI(已经开始了),然后再过不久就是AI创造新的AI了。

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

当然这也引发了不少担忧,毕竟GPT-4本身不还是个黑盒嘛。

人类拿着自己不理解的东西,让它解释另一个自己不理解的东西,这个风险emm……

OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开

这项研究由OpenAI负责对齐的团队提出。

他们表示,这部分工作是他们对齐研究的第三大支柱的一部分:

我们想要实现自动化对齐。一种值得思考的方面是,随着AI的进步,这种想法可能会得到进一步的扩展。随着AI模型不断提升智能水平,我们也能够找到更好的方式来解释AI。

论文地址:
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html

参考链接:
[1]https://openai.com/research/language-models-can-explain-neurons-in-language-models
[2]https://www.globalvillagespace.com/tech/openais-tool-explains-language-model-behavior/

今天关于《OpenAI震撼研究:用GPT-4解释30万神经元,原来AI的黑盒要AI自己去打开》的内容就介绍到这里了,是不是学起来一目了然!想要了解更多关于GPT-4,AI,模型的内容请关注golang学习网公众号!

声明:本文转载于:51CTO.COM 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>