登录
首页 >  科技周边 >  人工智能

AI制药来了

来源:搜狐

时间:2023-07-11 11:16:31 431浏览 收藏

golang学习网今天将给大家带来《AI制药来了》,感兴趣的朋友请继续看下去吧!以下内容将会涉及到等等知识点,如果你是正在学习科技周边或者已经是大佬级别了,都非常欢迎也希望大家都能给我建议评论哈~希望能帮助到大家!

AI制药来了

作 者丨唐唯珂

编 辑丨张铭心,张星

图 源丨视觉中国

AI制药再向前迈进一步。

由生成式人工智能驱动的临床阶段生物医药科技公司英矽智能(Insilico Medicine) 6月27日宣布,其已经开始AI研制药物的首批人体试验,为一名中国患者提供了一种治疗慢性肺部疾病特发性肺纤维化的新型疗法。

这种药物名为INS018_055,是全球第一种完全由AI设计和研制的药物,目前已推进至2期临床试验验证阶段,或即将成为制药业的重要里程碑。

近来,AI领域一度站上风口,制药业试图借势起飞,AI制药或将成为未来现实。

深圳某一级市场医药行业投资人向21世纪经济报道记者坦言,尽管AI医药发展迅速,相关研发企业已减少需要反复自证的过程,但市场仍然带着怀疑的目光去看待其技术和商业模式。2022年,全球多家AI制药公司经历了合作交易、融资等重要事件,但从海外AI制药公司披露的年报来看,AI制药企业也有着与普通biotech(生物医药) 相同的烦恼:管线推进不顺利、疯狂烧钱却收获不多、上市药物商业化受阻等。

AI制药正在前行

尽管存在争议,AI制药却已赋予医药行业丰富的想象力。

英矽智能联合首席执行官兼首席科学官任峰表示,“启动INS018_055的2期临床试验首例给药,是中国乃至全球人工智能制药领域的又一个里程碑。我们希望INS018_055能够为全球患者带来新的选择,并期待人工智能制药能够展示出更高效的成果。”

公开信息显示,2021年以来,在一体化人工智能平台Pharma.AI的支持下,英矽智能已提名12款临床前候选化合物,并将其中3款在研药物推进到临床验证阶段。除了此次的INS018_055外,借助生成式人工智能药物发现平台,英矽智能目前已布局拥有近30条内部自研管线的疗法组合,涉及纤维化、癌症、自免和神经退行性疾病领域。

英矽智能等公司是新一代生物科技公司,已获得数十亿美元的资金用于研发人工智能工具,以彻底改革药物开发。

实际上,整个制药行业都已看见AI制药领域的巨大空缺。摩根士丹利的一份报告显示,大型制药公司和投资者都在争相利用AI领域的市场机会,该市场规模已经达到500亿美元。根据咨询公司麦肯锡的估计,全球约有270家公司专注于AI技术驱动的药物研发。

具体而言,2022年,辉瑞延长与一家以色列AI公司的合作;阿斯利康扩大了与英国AI制药公司Benevolent AI的合作;赛诺菲宣布与Exscientia开展新的合作,并与英矽智能达成合作协议。

阿斯利康负责计算化学、发现科学和研发的副主任奥拉·恩奎斯特表示,AI工具已应用于该公司约70%的小分子药物发现项目,并且还将用于抗体设计等更复杂的项目。尽管AI尚未开发出一种可上市的新药,但我们可能正在向这个目标迈进。”

AI制药如何改变行业

首批进入AI制药领域的研发公司Exscientia的创始人安德鲁·霍普金斯曾表示,未来所有药物都会以AI的方式设计,这是一种更有效的分子设计方式。问题只在于,制药业会以多快的速度采用这一技术。

英矽智能首席执行官Zhavoronkov表示,该公司的人工智能平台有可能将发现药物的时间减半,并大幅削减药物投向市场的成本。赛诺菲、复星、强生等几家制药公司已与英矽智能达成合作协议,以利用其技术。

Zhavoronkov还补充称,根据目标的新颖性和复杂性,英矽智能的人工智能平台可以节省二到四年的临床前药物发现时间。

一般而言,一款新药的研发流程,从早期的靶点发现,到化合物发现,再到临床前至临床间,甚至审批上市至商业推广,都可以使用AI技术赋能和加速。 但目前而言,AI最主要集中应用于化药及生物药的发现和临床前开发阶段。

用于筛选的虚拟化合物库有几十亿分子,药物研发科学家依照计算机辅助技术和个人经验,选定大概的方向进行实验验证。如果检测到小分子与靶点蛋白之间存在结合能力,可以随后进行深入研究及优化处理。

AI在药物发现领域的作用在于提高找到正确化合物的概率,通过积累经验知识。“AI能够很快分析大量数据,找出规律,没有任何的偏见,避免了传统新药研发可能因项目负责人主导产生的人为干扰,为创新药物研发提供人类经验之外的更多可能性。”任峰说。

“医药研发前期如果存在一些模型、方法,能够考虑后面的失败因素,让药物筛选、靶点选择一次性通过,便能缩短新药研发流程。”BioMap首席AI科学家宋乐介绍称。尽管目前, 监管机构尚未批准完全使用该技术开发的药物,但人工智能在减少药物开发的时间和成本方面已经展示出积极的前景。

AI制药真的可靠吗?

目前,所有人的目光都集中在AI设计的药物对人类是否安全、对疾病是否有预期的效果、能否达到与传统药物一致的监管标准。

尽管AI制药百花齐放,但剑桥大学分子信息学教授安德烈亚斯·本德尔表示,在不同的疾病领域有不同的靶点、不同的化学物质,因此AI药物的批准并不意味着该领域的前景将是一片坦途。

部分批评人士质疑AI在药物研制方面的成功可能性,并认为这项技术的潜力被夸大了。Exscientia的首款治疗强迫症药物,使用AI开发,但在2020年中断,原因是未达到预期标准。此外在上个月,拥有人工智能药物发现平台的生物技术公司Benevolent AI表示,在其主要候选药物失败后,该公司将裁员180人,裁员人数几乎是其员工总数的一半。

实际上,在药物发现和开发中使用AI的前提,是使用算法来搜索海量数据,包括化合物的结构、动物研究和患者信息,以确定药物在人体内的靶标、哪种分子最适合、如何创造新的分子。没有这些海量数据,AI则无法提供最准确的结果。

但对于规模较小的私营公司来说,它们可能无法负担可购买的商业库,也没有大药企自己独有的分子库,数据量的不足构成其发展的主要障碍。

此外,浙江工业大学智能制药研究院院长段宏亮指出,算力也存在局限,“模拟一个蛋白或者分子空间构象对精度要求很高,目前即便是超级计算机也无法穷尽所有组合。”

海量数据是中国发展AI制药的优势。尽管国内人口基数庞大且医院规模庞大,在搜集和整合大规模数据方面更为有利,但数据质量仍需改善。段宏亮说,目前国内大部分企业通过公开数据库拿到的药物研发数据量少质低,需要从化学生物实验室产生数据并积累。

需要5-10年时间来确立稳定的技术路线,而要对制药行业进行根本性的颠覆则需要另外的5-10年。”这是微软杰出首席科学家刘铁岩对AI制药发展前景的预测。

SFC

本期编辑 江佩佩 实习生 章宝怡

21君荐读

62人的公司,卖了94亿!2年估值涨6倍,生成式AI最大并购案诞生!

华为透露大动作!事关AI

AI改卷来了!20小时完成一个省的高考数学辅助阅卷

今天带大家了解了的相关知识,希望对你有所帮助;关于科技周边的技术知识我们会一点点深入介绍,欢迎大家关注golang学习网公众号,一起学习编程~

声明:本文转载于:搜狐 如有侵犯,请联系study_golang@163.com删除
相关阅读
更多>
最新阅读
更多>
课程推荐
更多>